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Abstract
EQUIP is a free, customizable observation protocol for tracking patterns of student 
participation in STEM classrooms (https:// www. equip. ninja). EQUIP generates data 
analytics that are disaggregated by student social markers (e.g., race, gender), which 
makes it a useful tool for tracking patterns of inequity in student participation. How-
ever, prior studies have not yet established how many observations are needed to 
create a representative picture of instruction. In this study, we use g-theory and sim-
ulations with Cramer’s V to analyze observations from 20 undergraduate mathemat-
ics instructors to determine how many classroom observations are needed, and how 
this differs by individual codes. We found that Gender could achieve stability in just 
a few observations, whereas codes such as Instructor Response, Instructor Solicita-
tion Type, and Instructor Solicitation Method required nearly 20 observations. Thus, 
we recommend that users account for their specific context and needs with EQUIP 
when determining the ideal number of observations to conduct, using this research 
as a baseline. We also compare the g-study and simulations approaches, bringing up 
new methodological questions for the field.
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Introduction

Classroom observations are ubiquitous in STEM education. Observations are seen 
as one of the primary ways to authentically capture teaching practices, as compared 
to instructor self-report or a student survey. As a result, classroom observations are 
used in a variety of ways: for teacher professional development, for research studies, 
and for the evaluation of teachers and educational policies. As the use of classroom 
observations has become increasingly popular, so has the proliferation of classroom 
observation protocols. Myriad observation tools are now freely available.

Although considerable time, energy, and money is put into classroom observa-
tions, the accuracy of classroom observations is still a looming question that plagues 
the field. In many research studies, a teacher may be observed only one or two 
times to create a picture of their teaching practice. But how accurate is that picture? 
Research on classroom observations suggests that many more than two observations 
are needed to accurately capture teaching (Weston et al. 2020). A variety of factors 
contribute to the accuracy of an observation, including: the teacher’s own charac-
teristics, the subject domain, the grade level, the number of raters, and the particu-
lar classroom observation tool. For this reason, teachers working in some contexts 
may require fewer observations than others to achieve an acceptable level of reli-
ability (Hill et al. 2012). Nonetheless, it is clear that number of observations needed 
is closely linked to the observation tool in question, and for this reason, a careful 
analysis of any given classroom observation tool is needed to infer properties about 
that particular tool.

This manuscript focuses on the classroom observation tool EQUIP (Reinholz 
& Shah, 2018). EQUIP was designed with an explicit focus on equity, aiming to 
capture the equitable distribution of participation in classroom discussions. EQUIP 
has been used in a large number of prior studies both to support professional devel-
opment (e.g., Reinholz et  al. 2019, Shah et  al.,  2020) and research on classroom 
inequities (e.g., Ernest et  al., 2019;  Reinholz & Shah, 2018; Reinholz et  al., in 
press). These studies range from K12 to postsecondary settings, and while many are 
grounded in mathematics and STEM disciplines, they also focus on non-STEM dis-
ciplines as well. Given that EQUIP is a tool for both professional development and 
research, we hypothesize that a different number of observations may be required 
to accurately capture each of these purposes. In general, more observations are 
required for research purposes as compared to professional development. This paper 
addresses the following research questions:

1. How many observations are required to accurately capture teaching practices with 
EQUIP?

2. How does the number of observations differ by EQUIP codes?

Drawing on an existing dataset from a single large-scale research study in 
undergraduate mathematics (Reinholz et  al. in press), we characterize the stabil-
ity of classroom observations with EQUIP across 20 teachers in undergraduate 
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mathematics by using generalizability theory (Brennan 2001), and a simulation, to 
identify the optimal number of observations needed to accurately capture teaching 
practices.

Background

Stability of classroom observations

Over the last decade, considerable effort has been put into understanding the sta-
bility of classroom observations. There are a number of reasons for this. First, 
classroom observations are relatively time consuming and expensive, so it is ideal 
to limit the number of observations needed for any given purpose. Second, the 
results of observations can have high stakes. For instance, observations play an 
important role in evaluating teachers or their teaching. Similarly, observations 
may be a key source of data in assessing the impact of a new policy or instruc-
tional innovation. Typically, researchers have used generalizability theory (or a 
g-study) to determine how many observations are needed to achieve acceptable 
reliability. Here we outline the results of prior studies.

The first study of interest considered the Mathematical Quality of Instruction 
(MQI) instrument (Hill et al. 2008) and the number of lessons and raters required 
to achieve sufficient reliability for capturing teaching (Hill et  al. 2012). The 
g-study was conducted using a sample of 8 middle school mathematics teach-
ers, each who were observed four times. The scoring was completed by a team of 
10 graduate students and teachers who underwent a two-day training. Each video 
was scored by four raters.

Ultimately, the research team found it was needed to have four raters scoring four 
lessons to reach a standard of 80% reliability, which was still below the high stand-
ard of 90% reliability for policy decisions. Extrapolations from the D-study sug-
gested that around five to 12 observations would be required from a single observer 
for the same reliability. Nonetheless, the authors did make recommendations on 
observations for other purposes. It was noted that there were diminishing returns in 
adding additional observations or raters. Given this, it was suggested that three les-
sons with two raters was the optimal combination for research purposes, taking in 
the additional costs of more lessons and more raters (Hill et al. 2012).

Another study, which focused on the generalizability of observations from the 
Trends in International Math and Science Study (TIMSS), found that five to six 
observations with four raters were needed to provide a satisfactory level (80%) of 
reliability for decision-making (Newton 2010). However, given the cost of mul-
tiple observations, the authors suggested that four observations with four raters 
would be an acceptable compromise. Notably, the researchers found that there 
was more variation (requiring more observations) for elementary school as com-
pared to middle school classrooms.

In a third study, the International Comparative Analysis of Learning and Teach-
ing (ICATL) observation protocol was used to study classroom teaching in the 
Netherlands (van der Lans et  al. 2016). This study focused on classrooms across 
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disciplinary areas, with 22% of the sampled classrooms in mathematics. To achieve 
the cutoff set for formative feedback (70% reliability), a total of three observations 
with a single rater were needed. To achieve the high cutoff needed for evaluation 
decisions (90% reliability), more than 10 observations would be needed.

A final study, involving the Toolkit for Assessing Mathematics Instruction 
(TAMI-OP), found similar results (Weston et  al. 2020). This study differed from 
others, because it focused on undergraduate mathematics. The TAMI-OP was based 
on the Classroom Observation Protocol for Undergraduate STEM (COPUS; M. K. 
Smith et  al. 2013), with the time-segmented features of the Teaching Dimensions 
Observation Protocol (TDOP; Hora 2015). In this study, it was found that 11 obser-
vations over a single semester with a single rater were needed to have a reliable 
measure at 80%.

Summarizing across these studies, it is clear that a large number of observations 
and/or raters are needed to achieve sufficient reliability to use classroom observa-
tions for high-stakes policy decisions or teacher evaluations. Relaxing the standards 
to use data for formative feedback, this research suggests that at least three (Hill 
et al. 2012), but ideally four to six observations would take place (Hill et al. 2008; 
Newton 2010). As prior work highlights, the number of observations required 
depends on the tool, the context, and the purpose of the observations. Regardless 
of the specifics, it is clear that the one to two observations used in many research 
studies does not meet these recommended guidelines. We now turn our attention to 
EQUIP, which differs from previously studied tools in important ways.

EQUIP observation tool

Equity QUantified in Participation (EQUIP) is a classroom observation tool that was 
designed to capture patterns of equity and inequity in STEM classroom discourse 
(Reinholz & Shah 2018). EQUIP is also freely available as a web app (https:// www. 
equip. ninja), which streamlines the process of performing a classroom observation 
with the EQUIP protocol. EQUIP was designed to answer questions such as: What 
proportion of high-level questions are asked to women? Or, in what ways do Indige-
nous students contribute to the classroom discussion? Although no external tool can 
objectively define equity in a classroom (Garcia et al. 2018), EQUIP aims to provide 
data analytics that can identify sources of inequity, and can also be given to instruc-
tors to support professional development (Reinholz et al. 2019a, b).

EQUIP was developed through an extensive literature review, consultations with 
experts in educational equity, and extensive preliminary analyses from a team of five 
raters (Reinholz & Shah, 2018). Since its initial development, EQUIP has been used 
to study hundreds of classrooms across a variety of studies in which multiple raters 
achieved high levels of inter-rater reliability (Reinholz & Wilhelm, forthcoming; 
Reinholz et. al. in press). EQUIP is flexible insofar that there are a variety of use 
cases which vary across studies. For instance, EQUIP can be used real-time by an 
observer in a classroom (using the EQUIP app), it can be applied to classroom vid-
eos without transcripts, or it can be used to code transcripts of classroom discourse.

https://www.equip.ninja
https://www.equip.ninja
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The basic unit of analysis in EQUIP is a participation sequence. A sequence con-
stitutes a segment of talk by one student (and possibly the teacher) that is uninter-
rupted by another student. Thus, each sequence corresponds to only one student, 
which allows all coded participation to be assigned to particular students. For 
each coded sequence, features of the participation are coded to capture the qual-
ity of a student’s contribution. By adding demographic information about students 
in a class, EQUIP generates analytics for social marker groups. The demographic 
categories used are customizable, and prior research has focused on markers such 
as: race, gender, first-generation status, dis/ability, and socioeconomic status. The 
choice to attach sequences to particular students allows for disaggregation of par-
ticipation, but as a result, EQUIP does not capture student–student interactions in 
discourse, unless a user specifically customizes for it.

Like the demographic categories, EQUIP features customizable codes. Because 
EQUIP is customizable and focuses on quantifiable aspects of participated coded 
at the individual level, these codes may vary from study to study, but by default, 
EQUIP looks at features of participation such as: the student talk length, the stu-
dent talk type, a teacher’s questions, how a student is called on, and how a teacher 
responds to a student’s talk. Furthermore, EQUIP differs from a typical protocol, 
for instance, which relies on rubrics and affords opportunities to analyze patterns 
within and across the individual codes. Instead, EQUIP will capture the number of 
instances and characteristics of particular codable events related to participation. In 
general, the codes generated by EQUIP are categorical, although it is possible that in 
some cases the codes may have meaning as an ordinal scale. Because of this unique 
design feature, analyses of data generated by EQUIP may utilize Chi-Squared, Fish-
er’s Exact Test, Cramer’s V, and other less commonly used statistical measures.

Methods

Data sources

The data analyzed for this study were drawn from a prior research study that focused 
on equitable teaching in inquiry-oriented undergraduate mathematics (Smith et al. 
2019, Author et al., in press). In that study, EQUIP was used to analyze the teaching 
of 42 instructors who were using inquiry-based curriculum that were designed for 
one of three courses: Linear Algebra (LA), Abstract Algebra (AA), or Differential 
Equations (DE). Instructors in the project received ongoing professional develop-
ment through summer workshops and online working groups. The purpose of the 
professional development was to help instructors attend to the four key components 
of inquiry-oriented-instruction: generating student ways of reasoning, building on 
student contributions, developing shared understandings, and connecting to standard 
mathematical language and notation (Kuster et al. 2018).

For each instructor in the study, two units of teaching were observed and recorded. 
Here we focus on the second unit of teaching, which was recorded 8–10 weeks into 
the semester. We choose this focus because the later unit was best able to capture 
established teaching practices and classroom norms. Teachers were observed over 
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multiple, subsequent class sessions to ensure that the unit could be captured in its 
entirety (mean = 149 min, SD = 61 min). The EQUIP protocol was used to record 
these video records of classroom interactions, and in the process, the research team 
generated partial transcripts that could be referred back to later. The dataset was 
coded by a team of three raters, who achieved a high-level of interrater reliability 
(over 0.8 for Krippendorf’s alpha on each dimension). After inter-rater reliability 
was achieved on a sufficient subset of the whole dataset (over 20%), the rest of the 
class sessions were coded individually. Because we did not have multiple raters for 
all classrooms in the dataset, in our analyses below, we focus only on a single rater.

Given that the length of the observed units differed between instructors, we cre-
ated a standardized unit of a single 50-min class session, which mirrors the standard 
class session for a class meeting 3 times per week. Once standardized, we calcu-
lated the average number of contributions per 50-min unit (mean = 23 contributions, 
SD = 17.7). Based on prior studies, we assumed that at least three observations 
would be need for stability, so in our analyses below we only included classrooms 
for which there were more than 69 contributions total (N = 20 classrooms met this 
criterion).

Of the 42 instructors in the larger study, prior work identified a different subset 
of 20 instructors for which suitable measures of student gender and assessment data 
were available (Reinholz et al. in press). A finding of that study was that women’s 
average levels of participation significantly predicted gendered performance differ-
ences in outcomes. In other words, EQUIP data were useful in identifying sources 
of gender inequity in student outcomes and linking them to classroom participation. 
This is consistent with broader literature that highlights the connections between 
student participation and performance (e.g., Banes et al. 2019).

Codes

As mentioned previously, EQUIP is fully customizable. In Table  1, we provide a 
list of the codes that were used in the current study (Reinholz et. al. in press). These 
particular codes were customized to capture features of inquiry-oriented instruction.

In addition to this set of codes, the study also tracked the gender of participating 
students. While other studies with EQUIP have focused on student race, those data 
were missing in the present study, so they could not be included in our analyses. 
A thorough explanation of typical EQUIP codes and their theoretical grounding is 
described in depth elsewhere (Reinholz & Shah, 2018; Author et al. in press).

In Table 2, we provide a general set of descriptive statistics for the dimensions 
coded in the study.

G‑theory

G-theory is a statistical method used to quantify the stability of behavioral meas-
urement (Brennan 2001). There are two components in g-theory: (a) generalizabil-
ity study (g-study), and (b) decision study (d-study). G-study helps quantifying the 
variance of measurements. D-study helps identify the optimal number of classroom 
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observations to maximize reliability by analyzing the generalizability coefficient 
(Eρ2) and index of dependability (Φ) (Brennan 2001).

Since the data in this study were only coded by one rater, we conducted a one-
facet g-study for each code to determine the stability for the respective code, where 
the codes were treated as scores and the lessons for each class were treated as facets.

The data were transformed to fit the ordinal or continuous requirements of 
g-theory. Particularly, since student talk length had a natural ordinal order, it 
was transformed into a continuous variable (0: 1–4 Words, 1: 5–20 Words, 2: 
21 + Words). Binary data (Instructor Solicitation Method and Gender – gender 
data were a binary as a limitation of secondary analysis), were coded as binary 
(e.g., 0: Called On or 1: Not Called On for Instructor Solicitation Method). 
Finally, for non-binary categorical codes, we treated each subcode as a binary 
code. For example, the Student Talk Type code was broken down into Student 
Talk Type How (0: Not How, 1: How), Student Talk Type What (0: Not What, 1: 
What), Student Talk Type Why (0: Not Why, 1: Why), and Student Talk Type Other 
(0: Not Other, 1: Other). This was repeated for Instructor Solicitation Type and 

Table 1  EQUIP codes used to capture inquiry-oriented instructional discourse

Code Subcode Definition

Instructor solicitation method Called on Instructor calls on a student
Not called on A student interjects without being called on by instructor

Instructor solicitation type Why Instructor asks student to explain/justify their reasoning
How Instructor asks for a student’s solution method
What Instructor asks a student to read part of a problem, recall a 

fact, or give a numerical/verbal answer
Other Instructor asks a general question (e.g., “What did you 

think?”)
N/A Instructor does not ask the student a question

Instructor response Elaborate Instructor expands on or formalizes the student’s idea
Revoice Instructor repeats student contribution
Evaluate Instructor explicitly says the student is correct/incorrect
Follow-up Instructor asks a follow-up question and a new student 

responds
N/A Instructor does not respond to the student’s contribution

Student talk length 21 + words Student speaks 21 + words consecutively
5–20 words Student speaks 5–20 words consecutively
1–4 words Student speaks 1–4 words consecutively

Student talk type Why Student explains/justifies their reasoning
How Student describes solution method
What Student reads part of the problem, recalls a fact, or gives a 

numerical/verbal answer to a problem
Other Student asks a question or says something nonmathemati-

cal
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Instructor Response. After all d-studies were completed, we plotted the gener-
alizability coefficient across the d-study sample sizes. We particularly looked 
for diminishing returns of increased sample size (Huebner and Lucht 2019). All 
g-theory analyses were conducted using the gtheory package in R (Moore 2016). 
For more details on how to conduct g-theory in R see Huebner and Lucht (2019).

Simulation

We conducted a simulation study to complement the g-study. We used a simulation 
in addition to a g-theory analysis for multiple reasons. First, an important assump-
tion of a g-study is that there is one continuous or ordinal behavioral measurement 
that is treated as the score (e.g., a standardized quantitative measure calculated using 
a rubric) that summarizes a classroom observation. However, EQUIP does not pro-
vide single outcome variable, but rather emphasizes multiple dimensions of student 
participation which are not always continuous or ordinal (many are categorical). 
Second, and related to variable type, variable components in g-theory will tradition-
ally treat variables as continuous (Ark 2015), but there are both continuous and cat-
egorical data in EQUIP. Finally, there is no “ideal” measure, so whether one particu-
lar distribution of participation is preferable to another is a matter of interpretation 

Table 2  Descriptive statistics of the combined classrooms in the study

Input Description Count Proportion (%)

Instructor solicitation method Called on 588 (22)
Not Called on 2073 (78)

Instructor solicitation type How 69 (3)
Other 384 (14)
What 919 (35)
Why 213 (8)
N/A 1074 (40)

Instructor response Elaborate 593 (22)
Evaluation 137 (5)
Follow up 391 (15)
Revoice 384 (14)
N/A 1152 (43)

Student talk length 1–4 Words 645 (24)
5–20 Words 1414 (53)
21 + Words 601 (23)

Student talk type How 130 (5)
What 1633 (61)
Why 248 (9)
Other 648 (24)

Gender Man 1834 (71)
Woman 766 (29)
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within the local context (e.g., a why statement isn’t necessarily always better than a 
how statements for Student Talk Type). Our analyses needed to be sensitive to these 
types of issues.

For this reason, we needed a statistical measure that allowed for mixed variable 
types (both in the score output and variable inputs) as well as individual and aggregate 
analyses of the codes. Particularly, in addition to using a g-study analysis that required 
us to separate all codes into subcodes, we used a simulation that aims to mimic data 
collection process for varying number of classroom observations (e.g., one observa-
tion, two observations, and so on) to identify the optimal number of observations that 
accurately captures the teaching practices measured by EQUIP. Simulations were espe-
cially useful in this study since they were situated in the data and were not dependent 
on meeting statistical assumptions. This algorithm we used for simulations is shown in 
Table 3. By using both g-theory and the simulations, we are able to continue conversa-
tions about to relate to the existing literature that uses g-study and provide an additional 
method to support or challenge the results of a g-theory analysis.

We began by randomly sampling consecutive sequences of size S for a varying num-
ber of sampled observations (from 1 to i) from the complete observed data (Line 3). In 
this simulation, we only allowed for consecutive sequences to account for dependency 
between time-adjacent sequences. Although the algorithm allows the user to select the 
number length of S, S was 21 for all classrooms in this data because this was the aver-
age number of sequences across inquiry-oriented undergraduate mathematics class-
rooms from the larger sample. In all classrooms, we allowed up to i = 20 observations. 
We then calculated the Cramer’s V for each code by comparing the randomly sam-
pled data from Line 2 to the complete observed data (Line 5). Cramer’s V measures 
the association between categorical data, where Cramer’s V closer to zero implies that 
there is a weak effect. In this simulation, Cramer’s V is a measure of accuracy where a 
small Cramer’s V implies that the randomly sampled data and complete sampled data 
are similar whereas a large Cramer’s V implies that there is a difference between both 
data. Finally, after j = 500 iterations, the combined weighted average Cramer’s V (Line 
9) for each sample observation Oi and iteration j was:

Table 3  Simulation algorithm

Line Code

1 For each number of sampled observations from 1 to i
2  For each iteration from 1 to j
3   Randomly sample S consecutive sequences from the complete observed data, with replace-

ment, to create the randomly sampled data
4   For each code k
5    Calculate the Cramer’s V comparing the randomly sampled data to the complete observed 

data for this code ( Ci,j,k)
6  End
8 End
9 Calculate the combined weighted average Cramer’s V across the codes k for each sample obser-

vation Oi using inverse variance weights
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where wi,k = 1∕�2

i,k
 and �2

i,k
 is the variance for code k generated using the sam-

pling distribution in Line 5 for the sample observation Oi across all iterations. In 
other words, we found the average Cramer’s V for each code k in iteration j, then 
used inverse variance weights to find the combined average Cramer’s V across all 
the codes for each sample observation Oi in iteration j, and used this to create a sam-
pling distribution of the weighted average Cramer’s V across all iterations j for each 
sample observation Oi.

For example, to randomly simulate two classroom observations (i = 2) in the 
15FA01 data, with an average of 21 sequences per observation (S = 21) and six 
codes, we began by randomly sampling 42 consecutive sequences from the complete 
observed data. For each of the six codes, we calculated the Cramer’s V comparing 
the 42 randomly sampled consecutive sequences to the original data for the eight 
codes, found the combined weighted averaged of the Cramer’s V across the j = 500 
randomly sampled observations, and created a sampling distribution of the Cramer’s 
V for each code as well as for the combined weighted average to create inferences 
about the generalizability of Oi observations.

There are a few items worth noting in this simulation. First, Cramer’s V measures 
the effect size in categorical data across different groups that is based on Pearson’s 
chi-square statistic. Unlike the phi statistics, Cramer’s V measures the association 
between two categorical variables when the contingency table is larger than 2 × 2 
and accounts for small sample sizes. The degrees of freedom for all the Cramer’s 
V is min(r-1,c-1), where r and c represent the number of rows and columns on a 
contingency table, respectively. In this simulation, the contingency table included 
the categories of a code (varied by code) and the two groups (the complete observed 
data and randomly sampled data). Since there were only two groups, regardless of 
the code, the degrees of freedom for each Cramer’ V was df = 1, allowing us to aver-
age across and within the different codes within each randomly sampled data.

Second, unlike g-study analyses, the simulation afforded opportunities for us 
to create inferences about the Cramer’s V within the observations, such as creat-
ing a sampling distribution of the mean Cramer’s V for each code or across codes, 
to guide us in identifying the optimal number of classroom observations. In this 
study, we considered multiple criteria to determine the optimal number of classroom 
observations: (a) classroom observations that have an average Cramer’s V below 
0.10, (b) classroom observations that have at least 95% of the simulated Cramer’s 
V below the 0.10 threshold, and (c) have at least three classroom observations. The 
first criterion was selected in alignment with Cohen’s (1988) recommendations for 
interpreting the Cramer’s V, where Cramer’s V below 0.10 imply that there is no 
trivial difference between two groups. The second criterion extends the first criteria 
by ensuring that the majority if the Cramer’s V from the randomly sampled obser-
vations are below the 0.10 threshold level. The third criteria builds on the current 
literature that suggests that at least three classroom observations are required to find 
the optimal number of classroom observations (Hill et al. 2012).

∑k �

wi,k ⋅ Ci,j,k

�

∑k
wi,k
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Finally, given that not all classroom observations had the same number of 
sequences, we focused on the analysis of consecutive sequences in our simulations. 
In this way, the sequences we used either represented multiple sequences from the 
same class session, or sequences from time-adjacent class sessions. In our algo-
rithm, we always sample subsequent sequences, to account for the time-dependence 
of observations. We recognize multiple sources of variation between observations. 
On one hand, we expect that observations would look different over a semester or 
year. In our study, we have subsequent observations in a single unit, so we may not 
fully capture this variation. We also except that there is random variation between 
any two given days, given changes in teaching practices and different types of les-
sons. This is the type of variation we aimed to uncover through the results of our 
simulations.

Results and discussion

Our results provide multiple analyses to characterize the stability of observations 
with EQUIP. The results section is divided into three parts. First, we provide an 
aggregate analysis of Cramer’s V across all 20 classrooms in the sample. This pro-
vides an overall picture of the stability of observations. Second, we disaggregate 
by specific type of code, to show the stability of different constructs within EQUIP. 
Third, we present the results of the g-study, which is disaggregated by each level of 
each code (a further level of disaggregation).

Simulations

Stability by class

Our first set of simulations focused on the stability of EQUIP observations across 
classes. These analyses were completed using an average weighted Cramer’s V, 
shown in Fig. 1. The inverse variance weights were especially useful in this simula-
tion since they minimize the variance of the weighted averages by placing a heavier 
weight on codes with a smaller variance.

As expected, we see a decrease in the Cramer’s V and the 95% lower bound as 
the number of observations increases for all 20 classes. The average Cramer’s V and 
95% lower bound for all the courses was below the 0.10 threshold after one class-
room observation. The 95% lower bound varied slightly by classroom. Particularly, 
three classes had a 95% lower bound at or below 0.10 after three observations (DE1 
DE8, LA2), and the remaining classes had a 95% lower bound at or below 0.10 after 
four classroom observations. In other words, all classes had an average Cramer’s V 
and 95% lower bound after at least four classroom observations. These results indi-
cate that—at least for the classes in this sample—they did not differ greatly in terms 
of the overall number of observations required to reach some level of stability with 
Cramer’s V.
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Stability by code

Our next set of analyses focused on the stability of each individual code within 
EQUIP. To illustrate our results, we provide an in-depth analysis of the overarching 
trends across one class, DE1, shown in Fig. 2. This particular class was chosen as 
it was representative of the general trends we found. We provide a summary of the 
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Fig. 1  Forest plots of the combined Cramer’s V for up to 20 observations across classes. The vertical 
lines represent the bottom 95% bounds for the Cramer’s V for each randomly sampled observation, up to 
twenty. The 95% lower bounds that cross the 0.10 threshold are in red. Similarly, the average Cramer’s V 
within each randomly sampled observation are shown in points, where the red points are averages above 
0.10
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results for all classes in Table 4, and we will provide visuals for the entire dataset in 
our supplementary materials. The 95% lower bound of the combined Cramer’s V 
within each of the 20 randomly simulated classroom observations are shown using 
vertical lines. Lower bounds that cross the 0.10 threshold are shown in red and those 
at or below the 0.10 are shown in black. The averages within each number of obser-
vations are also shown, where averages above the 0.10 are shown in a red point and 
those at or below 0.10 are shown in a black point.

In Fig. 2, we see that all the codes had an average Cramer’s V at or below the 
0.10 threshold after at most eight observations, with Student Talk Length, Student 
Talk Type, and Gender having an average Cramer’s V below 0.10 after one obser-
vation. In terms of the 95% lower bound, Gender, Student Talk type, and Student 
Talk Length were at or below the 0.10 threshold after five classroom observations. 
The Instructor Response, Instructor Solicitation Type, and Instructor Solicitation 
Method codes varied more across the number of observations, requiring more 
than 20, at least 17, and at least 19 classroom observations, respectively, to show 
a 95% lower bound at or below the 0.10 threshold. In other words, participation as 
characterized by Instructor Response, Instructor Solicitation Type, and Instructor 
Solicitation Method varied more than the other codes across DE1. We interpret 
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Fig. 2  Modified forest plots of Cramer’s V for up to 20 observations for the codes in DE1 (S = 21)

Table 4  Number of observations to achieve an average Cramer’s V (Avg CV) and 95% lower bound 
(95% LB) at or below 0.10 in all classes

Gender Student talk 
type

Student talk 
length

Instructor solicita-
tion method

Instructor 
response

Solici-
tation 
method

Avg CV 1 1 1 7 9 7
95% LB 1 6 5 17 20 + 19
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this to mean that the ways in which instructors used evaluation, solicitation types, 
and solicitation methods differed more across particular lessons, whereas the gen-
dered distributions of participation and the lengths and types of student talk were 
more stable. It could be that while a teacher may have used a variety of new dif-
ferent strategies across lessons, once a classroom culture becomes established, 
student participation patterns are more ingrained. In addition, the Instructor 
Response, Instructor Solicitation Type, and Instructor Solicitation Method codes 
had a large number of categories, which inherently adds more variance. One pos-
sible way to address this would be to condense the codes into fewer categories.

These results are shown to highlight how researchers can consider individual 
codes to select the optimal number of classroom observations. For example, if a 
researcher is interested in stabilizing the Gender code (which would be one signi-
fier of participatory equity) as measured by the average Cramer’s V and 95% lower 
bound, then only a few observations may be needed. However, if the researcher is 
interested in getting an accurate and efficient interpretation of teacher evaluation, 
they may need many more observations.

In terms of code stability across all 20 classes, Table  4 shows the number of 
observations needed to achieve an average Cramer’s V and 95% lower bound at or 
below 0.10 for all the codes. The Gender code is the most stable since it achieved 
an average Cramer’s V and 95% lower bound at or below 0.10 in all classes after 
one classroom observation. The Student Talk Type achieved an average Cramer’s V 
and 95% lower bound after six classroom observations. Additionally, Student Talk 
Length achieved an average Cramer’s V and 95% lower bound after five observa-
tions. Although all the other codes (Instructor Response, Instructor Solicitation 
Type, and Instructor Solicitation Method) had an average Cramer’s V below 0.10 
after at most ten observations, they also all had a 95% lower bound after at least 20 
classroom observations. This may be telling of the variety in classroom participation 
as measured by these codes.

G‑theory

To supplement the simulations study, we also used g-theory. After all g- and d-stud-
ies were conducted, we plotted the generalizability coefficients in relation to the 
d-study sample sizes. The plot for all the codes is shown in Fig. 3. As a reminder, 
Student Talk Type, Instructor Response, and Instructor Solicitation Type were trans-
formed to treat the subcodes as binary codes. The Student Talk Length, Gender, and 
Instructor Solicitation Method codes were already ordinal or binary.

Overall, we see that increasing the number of observations increases the gen-
eralizability code. However, the generalizability coefficient and rate at which they 
achieved high generalizability coefficient varied by code. For example, the Gen-
der code achieved a relatively high generalizability coefficient and diminishing 
returns after about five observations. Although the simulation suggested at least one 
observation (a lower number), these results were still consistent across the simu-
lation and g-study, as Gender appeared to be the most stable code in each case. 
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One interpretation of this pattern is that the distribution of participation by Gender 
remained consistent across most classrooms. On the other hand, the majority of the 
other codes (e.g., Instructor Solicitation Method, Student Talk Length, Student Talk 
Type, Instructor Solicitation Type, Instructor Response) did not appear to achieve 
diminishing returns after about 10 observations. It is also worth noting that some 
codes and subcodes that had relatively small occurrences (e.g., Instructor Solicita-
tion Type, Student Talk Type Why and Other, and Instructor Response Elaborate) 
generally had lower generalizability coefficients. This may be attributed to the vari-
ance of the codes and subcodes. Nonetheless, it suggests that variables with high 
variance and possibly low frequencies require more than 10 observations to achieve 
diminishing returns.
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ρ
ρρ
ρρ
ρρ
ρρ
ρρ
ρρρ

ρρρ
ρρρ

0.1

0.2

0.3

0.4

5 10 15 20
D Study Sample Sizes

G
en

er
al

iz
ab

ilit
y 

C
of

fic
ie

nt How

ρ
ρ
ρρ
ρρ
ρρ
ρρ
ρρρ

ρρρ
ρρρ

ρ

0.1

0.2

0.3

0.4

0.5

5 10 15 20
D Study Sample Sizes

G
en

er
al

iz
ab

ilit
y 

C
of

fic
ie

nt Other

ρ
ρ
ρρ
ρρ
ρρ
ρρ
ρρρ

ρρρ
ρρρ

ρ

0.1

0.2

0.3

0.4

0.5

5 10 15 20
D Study Sample Sizes

G
en

er
al

iz
ab

ilit
y 

C
of

fic
ie

nt What

ρρ
ρρ
ρρ
ρρ
ρρ
ρρ
ρρ
ρρ
ρρ
ρρ

0.05

0.10

0.15

0.20

5 10 15 20
D Study Sample Sizes

G
en

er
al

iz
ab

ilit
y 

C
of

fic
ie

nt Why

Instructor Response

ρ
ρ
ρρ
ρρ
ρρ
ρρ
ρρρ

ρρρ
ρρρρ

0.1

0.2

0.3

0.4

0.5

5 10 15 20
D Study Sample Sizes

G
en

er
al

iz
ab

ilit
y 

C
of

fic
ie

nt Elaborate

ρρ
ρρ
ρρ
ρρ
ρρ
ρρ
ρρ
ρρρ

ρρρ

0.1

0.2

0.3

5 10 15 20
D Study Sample Sizes

G
en

er
al

iz
ab

ilit
y 

C
of

fic
ie

nt Evaluate

ρ
ρ
ρ
ρρ
ρρ
ρρ
ρρρ

ρρρ
ρρρρ

ρ

0.2

0.4

0.6

5 10 15 20
D Study Sample Sizes

G
en

er
al

iz
ab

ilit
y 

C
of

fic
ie

nt Follow Up

ρ
ρ
ρ
ρρ
ρρ
ρρ
ρρρ

ρρρρ
ρρρρ

0.2

0.4

0.6

5 10 15 20
D Study Sample Sizes

G
en

er
al

iz
ab

ilit
y 

C
of

fic
ie

nt Revoice

ρ
ρ
ρρ
ρρ
ρρ
ρρ
ρρρ

ρρρ
ρρρρ

0.1

0.2

0.3

0.4

0.5

5 10 15 20
D Study Sample Sizes

G
en

er
al

iz
ab

ilit
y 

C
of

fic
ie

nt N/A

Instructor Solicitation Type

ρρ
ρρ
ρρ
ρρ
ρρ
ρρ
ρρ
ρρ
ρρ
ρρ

0.04

0.08

0.12

5 10 15 20
D Study Sample Sizes

G
en

er
al

iz
ab

ilit
y 

C
of

fic
ie

nt How

ρρ
ρρ
ρρ
ρρ
ρρ
ρρ
ρρρ

ρρρ
ρρ

0.1

0.2

0.3

0.4

5 10 15 20
D Study Sample Sizes

G
en

er
al

iz
ab

ilit
y 

C
of

fic
ie

nt Other

ρ
ρ
ρρ
ρρ
ρρ
ρρ
ρρρ

ρρρ
ρρρρ

0.1

0.2

0.3

0.4

0.5

5 10 15 20
D Study Sample Sizes

G
en

er
al

iz
ab

ilit
y 

C
of

fic
ie

nt What

ρρ
ρρ
ρρ
ρρ
ρρ
ρρ
ρρ
ρρ
ρρρ

ρ

0.1

0.2

5 10 15 20
D Study Sample Sizes

G
en

er
al

iz
ab

ilit
y 

C
of

fic
ie

nt Why

ρ
ρ
ρ
ρρ
ρρ
ρρ
ρρ
ρρρ

ρρρ
ρρρ

0.2

0.4

0.6

5 10 15 20
D Study Sample Sizes

G
en

er
al

iz
ab

ilit
y 

C
of

fic
ie

nt N/A

Other

ρρ
ρρ

ρρ
ρρ

ρρ
ρρρ

ρρρ
ρρρ

ρ

0.05

0.10

0.15

0.20

5 10 15 20
D Study Sample SizesG

en
er

al
iz

ab
ilit

y 
C

of
fic

ie
nt

Student Talk 
 Length

ρ

ρ
ρ
ρρ

ρρ
ρρρρ

ρρρρρρρ
ρρ

0.3
0.4
0.5
0.6
0.7
0.8
0.9

5 10 15 20
D Study Sample Sizes

G
en

er
al

iz
ab

ilit
y 

C
of

fic
ie

nt Gender

ρ
ρ
ρρ

ρρ
ρρ

ρρρ
ρρρρ

ρρρρρ

0.2

0.4

0.6

5 10 15 20
D Study Sample SizesG
en

er
al

iz
ab

ilit
y 

C
of

fic
ie

nt

Instructor Solicitation 
 Method

(a)

(b)

(c)

(d)

Fig. 3  The reliability of the student talk type, instructor response, instructor solicitation type, student talk 
length, gender, and instructor solicitation method
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Conclusion

Our study used both a g-study and simulations to study in-depth the stability of 
classroom observations with the EQUIP tool. Our findings have a number of 
insights for use of the EQUIP tool and observations more generally. On the whole, 
our results showed that the overall Cramer’s V for each class across the simulation 
study tended to achieve stability very quickly, which meant that we did not find evi-
dence of large amounts of variance between classes.

However, when we looked at individual EQUIP codes, we did find a fair deal 
of variation. Of particular interest was that the Gender code was amongst the most 
stable in both the simulations study and the g-study. This suggests that when using 
EQUIP to capture overall patterns of inequitable participation, just a few observa-
tions may be sufficient. In our simulations study, we also found that Student Talk 
Type and Student Talk Length became stable after just one observation on average, 
or 5–6 observations for stability with the 95% confidence interval. This contrasted 
the instructor codes which varied much more. Instructor Response, Instructor Solic-
itation Type, and Instructor Solicitation Method only achieved diminishing returns 
at closer to 20 observations. One possible interpretation is that while instructor 
moves may vary more between different lessons, once patterns of student participa-
tion become entrenched, they are relatively stable. Another possible interpretation 
relates to the inherent variance of codes with many levels. For instance, there were 
many levels for Instructor Response and some of them occurred rather infrequently, 
which could result in large variations between lessons.

To interpret these results, we reiterate the context of inquiry-oriented teaching 
in undergraduate mathematics. This is a context with free-flowing discussions and 
relatively high-levels of classroom discourse, which may result in greater vari-
ation across lessons. We suspect that a more structured setting (e.g., a traditional 
Initiate-Response-Evaluate-focused classroom in middle school mathematics) might 
have much less variation across lessons. We also note that our observations were 
sampled from subsequent lessons, and if the observations were taken from different 
parts of the semester there would likely be more variation. Thus, when generaliz-
ing the results into other contexts of observation, a reader should carefully account 
for potentially sources of variation and how they would compare to this benchmark 
study. In addition, a user must consider their goals of the observations. While a few 
observations are likely sufficient for professional development (at least along some 
measures), a much larger number would be desirable for policymaking. We also rec-
ommend that users can reduce the number of levels for each code as a strategy to 
reduce variation in observations, as this would limit the occurrence of codes that 
arise with very low frequency and thus add greatly to variation.

We also remark on the methodological contributions of this work. In our study 
we used both a g-study and simulations with Cramer’s V. On the whole we found 
that the results were consistent (at least in terms of which codes were more or less 
stable), but the g-study predicted a higher number of observations needed to achieve 
stability. We suspect that one reason for this was that the g-study required us to 
split up variables that were naturally categorical, which resulted in a large number 
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of subcodes, many of which had a small number of occurences. The simulations 
approach was powerful because it allowed us to quantify the stability of mixed 
behaviorial measurements, rather than relying on continuous or ordinal measure-
ments, as was typical for g-theory. Our work provides a useful starting point for 
others who wish to study the stability of mixed behaviorial measurements like those 
used in the EQUIP tool. We recommend that using g-theory, simulations, and other 
potential approaches in conjunction can give a more holistic view.
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