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Introduction 
 

A wealth of research describes the teaching and learning of proof (e.g., Byrne, 2014; 
Moore, 1994). This article extends existing work to highlight social factors related to learning 
proof. Beyond proof construction, students can engage in a variety of proof sensemaking 
practices (Selden & Selden, 2017). By engaging with these practices, students experience the 
tentative nature of mathematics in the making, challenging the notion that mathematics comes 
pre-packaged in a neatly finished form (Hersh, 1997).  

Our study focused on 13 students who engaged in peer-review conferences of each 
other’s proofs in a graduate-level real analysis course for mathematics teachers. To understand 
student sensemaking, we explored how the relationship between a student and a particular claim 
(formally defined below as distance) impacted sensemaking. Our study also explored the 
resulting impact on student perceptions of proof. We important theoretical contributions to the 
study of proof, by proposing a new construct—ontological distance—and by empirically 
documenting the role of various forms of distance in proof sensemaking. 
 

Theoretical Framing 
Proof as a Social Practice 
 From a situated perspective, a proof is a logical argument that meets negotiated social 
standards (Weber, 2008). We use proof to denote an argument that is deemed complete and 
correct, contrasting an attempted proof, which may not meet the negotiated standards (Byrne, 
2014). Beyond constructing proofs, mathematical proficiency requires students to make sense of 
proofs. In this article, we define sensemaking as the set of practices typically associated with 
proof comprehension and validation (Selden & Selden, 2017). Validation focuses on determining 
the correctness of an attempted proof (Weber, 2008), whereas comprehension describes how one 
understands a proof (Mejia-Ramos et al., 2012). Below in our methods, we operationalize 
sensemaking through four constructs (meaning, logic, justification, and holistic) from a model 
for the assessment of proof comprehension (Mejia-Ramos et al., 2012). 
 



Sensemaking and Distance 
 Conversational analysis provides tools for understanding the relationship between 
students and particular claims made in attempted proofs. Here we draw upon prior work that 
distinguished two types of distance between individuals and claims: rhetorical and epistemic 
(Conlin & Scherr, 2018). In addition, we propose a third type of distance: ontological. Our 
analyses below explicate how various forms of distance influenced sensemaking. These types of 
distance are distinct, but interrelated. 
 Rhetorical distance refers to the relationship between an individual and the author of a 
claim (Conlin & Scherr, 2018). An author can be an external authority, a peer, or oneself. Proofs 
from an authority are typically assumed to be correct. Although such proofs provide a model of 
expert practice, they may use formalisms that are unfamiliar to students (Selden & Selden, 
2014). In contrast, a peer’s attempted proof is typically communicated less formally, but it 
cannot be assumed to be correct. Similarly, the veracity of attempted proofs constructed by 
oneself is unknown, and the proximity of students to their own work inhibits their ability to see 
any flaws (Reinholz, 2016). The rhetorical distance between a student and a claim impacts how 
a student is likely to interpret it. For instance, students are more likely to assume a proof from an 
authority is correct without needing to validate it, as compared to a proof from a peer. 
 Epistemic distance refers to what extent an individual endorses a claim (Conlin & Scherr, 
2018). Epistemic distance is fluid and may evolve throughout a conversation. For instance, 
individuals may endorse claims, or they may intentionally distance themselves (e.g., by hedging, 
joking, quoting, changing tone of voice) as a mechanism to engage tentative understandings 
more safely. As students create distance, they become dissociated from particular claims, and 
thus, they can “save face” if a claim turns out to be incorrect (Conlin & Scherr, 2018). 
 In this article we propose the additional concept of ontological distance, which refers to 
the relationship between an individual and the medium through which a claim is represented. For 
instance, an individual can represent a claim through spoken word (in the moment) or by 
embodying it into a particular artifact (e.g., inscriptions on paper). Externalizing claims makes 
them easier to engage with as distinct entities. In addition, the nature of a medium influences 
how individuals may engage with the idea embodied in it. For instance, scratch-work on a 
whiteboard conveys a sense of tentativeness that differs from a solution typeset in Latex. 
Externalizing claims also adds temporality, insofar that one can compare past claims and present 
claims. Thus, ontological distance can help separate individuals from claims to support more 
critical engagement.  
 
Perceptions of Proof 
 Hersh (1997) contrasts two types of mathematics: the “front door” and the “back door.” 
Front-door mathematics comes in a neatly packaged form (e.g., textbooks). Back-door 
mathematics is more informal, messy, and often incomplete. Back-door mathematics precedes 
front-door mathematics that is later disseminated publicly. A complete picture of mathematics 
requires familiarity with both the front and back doors (Hersh, 1997). 
 When students only engage with front-door mathematics, it often creates a false 
perception that mathematics is about memorization, potentially leading to feelings of isolation 
and alienation (Ernest, 1992). In contrast, when students experience mathematics through both 
doors, it supports exploration and connection (Boaler & Greeno, 2000). As we argue below, 
engaging in the sensemaking of proofs at various distances allows students to coordinate both the 
formal and informal, leading to a deeper appreciation of mathematics.  



 
Distance in the Peer Review of Proofs 

Peer review involves students exchanging feedback on their attempted proofs through a 
peer-review conference, revising, and submitting revised proofs (Byrne, 2014). To date, this 
common pedagogical practice remains undertheorized, and has not drawn heavily from the rich 
literature on self- and peer-assessment (e.g., Reinholz, 2016; Sadler, 1989). In this paper, we 
posit a relationship between sensemaking and perceptions that develops as students engage with 
attempted proofs through peer-review conferences. This engagement is mediated by various 
forms of distance, which provide a productive learning environment. Peer-review conferences 
provide an abundance of attempted proofs, allowing students to coordinate ideas from various 
rhetorical distances (i.e. authorities, peers, and themselves). Through exposure to attempted 
proofs at different gradations of quality, students are supported to develop a more robust 
conception of a high-quality proof (Sadler, 1989).  

Students construct their attempted proofs before a conference takes place, and throughout 
the conference they gradually refine their ideas. The draft creates ontological distance between a 
student and their initial thinking, which supports revision of their ideas. Students can also create 
epistemic distance throughout the free-flowing conversation, which makes it safer for them to 
engage productively with their emergent understandings. Each of these forms of distance 
supports students to engage with both front-door and back-door mathematics, enriching their 
perceptions of proof. In turn, as student perceptions shift, it will further influence how they 
engage with sensemaking practices (e.g., students who perceive mathematics as a messy, 
collaborative discipline will be more likely to take risks). 

This study explored the role of distance in peer-review conferences through two research 
questions: 1) what role did various forms of distance play in students’ sensemaking practices? 
And 2) how were these forms of distance and sensemaking practices related to students’ 
perceptions of proof?  
 

Methods 
Context and Participants 
 The study took place in Graduate Analysis for Teachers, offered at a large, PhD-granting 
Hispanic-Serving Institution in the US. The course serves students earning a Mathematics 
Education Master’s Degree. These students complete a variety of higher-level mathematics and 
education-focused courses. Some courses are designed specifically for teachers to engage with 
higher-level mathematics content (like the course in this study), while others are standard 
graduate-level mathematics courses. All 13 students (8 women, 5 men) enrolled in the course had 
a bachelor’s degree in mathematics and consented to the study, which was completed with 
approval from an Institutional Review Board.  
 
Course Content 

The course met for 75 minutes twice weekly. It surveyed graduate-level real analysis 
content (e.g., sets, metric spaces, curves, series, etc.). Below we focus on continuity and uniform 
continuity. The course coverage of these topics included the definitions of these concepts on real 
numbers and over abstract metric spaces and how these concepts related to sequences of 
functions, convergence, and uniform convergence. There was no assigned text, but the instructor 
(the first author) drew from a variety of sources (e.g., Bressoud, 2007; Rudin, 1964). Because 



many students had taken undergraduate real analysis over five years ago, concepts like 
convergence, converse/contrapositive, and proof techniques were also revisited.  
 
Instructional Design 
 There were three primary instructional methods: inquiry explorations, a special form of 
two-column proofs, and peer review.  
 
 Inquiry explorations. Group work was used to explore mathematics. A typical lesson 
involved a 1) short introduction, 2) student exploration in groups, and a 3) plenary discussion.  
For example, an inquiry exploration would require students to construct the Lebesgue curve as a 
sequence of functions and map quadrants on the square to ternary expansions. After group work 
time, the students would present their ideas and the instructor would use discourse moves to 
synthesize their work (Reinholz, 2018).  
 
 A special type of two-column proofs. All proofs were structured using a two-column 
format, adapted from the familiar format used in many secondary school geometry courses. The 
left column consisted of formal mathematics and the right column was for annotations. 
Annotations allowed a proof’s author to comment on their thought process, include relevant 
diagrams and definitions, and indicate areas of confusion. Annotations were also used to provide 
feedback for peer review. Authors used pencil for their annotations, while reviewers used pen. 
This design was a scaffold intended to help students codify their intuitive ideas into a formal 
proof (Mamona-Downs & Downs, 2010). 
 
 Peer review. Students completed weekly homework assignments, with one problem 
designated for peer review. The peer review process, called Peer-Assisted Reflection (PAR; 
Reinholz, 2016) had students: 1) create a draft, 2) exchange peer feedback, 3) revise their drafts, 
and 4) turn in a final submission. Students annotated their drafts and submitted solutions using 
the two-column format. Submissions also included a response to reviewer comments, loosely 
modeled on professional academic peer review (e.g., in Mathematics Education). Steps 1), 3), 
and 4) of peer review occurred outside of class, while step 2), exchanging peer feedback, 
occurred during class. Students were assigned random partners (with one group of three). 
Students had five minutes for silent reading and annotating each other’s attempted proofs and 
approximately fifteen minutes for discussion. Students then had two days to revise their work 
and turn the final draft in the next class session. 
 
Data Sources 
 We collected two data corpuses for analysis.  

Student sensemaking. Students audio recorded their peer conferences for extra credit (N 
= 20 conferences recorded). Conferences were only sampled from the second half of the 
semester, after students were already familiar with the process. Student written work (draft, 
feedback, and solution) was also collected. Students who did not wish to participate could 
receive extra credit by completing additional homework problems, but no students opted to do 
so. 
 Perceptions of proof. The final exam included a five-question take-home essay: 1) How 
does your experience with proof in this class compare to your experiences with proof in other 
classes? 2) What does a “good proof” look like? What information does it provide for a reader? 



3) What should you include in an annotation of your own proof, to make it easier for a peer to 
understand? 4) What type of feedback should you provide to a peer (when annotating their work) 
to help them create a good proof? 5) What are the implications for the teaching and learning of 
proof?  
 
Analysis 

Student sensemaking. Drawing on a proof comprehension framework (Mejia-Ramos et 
al., 2012), we developed a coding framework (see Table 1). We chose a unit of analysis as an 
entire peer conference, because our goal was to identify the presence of the four codes in Table 1 
and explore their relationship to types of distance. Because the codes were present throughout 
segments a conversation, rather than occurring as discrete events, the total quantity of instances 
was of less concern. The first author coded all 20 recorded peer conferences, and the second 
author double-coded four conferences (20% of the dataset). A single disagreement was resolved 
through discussion. 
 
Table 1. Sensemaking codes. 
Code Evidence Example 
Meaning Students focus on the meaning of words and 

statements: exploring definitions, revoicing 
statements, or giving examples of specific terms. 

"We are wondering what the 
difference between the 
definitions of continuity and 
uniform continuity are." 

Logic Students focus on logical connections: 
identifying the purpose of sentences, identifying 
the overall proof framework (e.g., contradiction, 
contrapositive, induction, cases), or changing 
logical statements (e.g., through negation). 

“choose a point where it's 
not uniformly continuous 
and then use the negation” 

Justification Students connect claims to data and warrants: 
making implicit warrants explicit, by identifying 
data supporting a claim, or identifying claims 
supported by a given statement. 

“The only thing that I don't 
know is how we can 
conclude this.” 

Holistic Students describe proof as a whole: summarizing 
main ideas, methods, or connecting techniques 
between proofs.  

"It goes back to the ball idea 
(creating a neighborhood)." 

 
 Perceptions of proof. Drawing from the learning ecologies framework (Boaler & 
Greeno, 2000), we developed four codes (connection, exploration, alienation, and memorization) 
through a four-step process (see Table 2). Each student essay was reviewed, and memos 
summarized how connection, exploration, alienation, and memorization were evident. Tentative 
thematic codes (Corbin & Strauss, 2007) were developed to capture the focus of student 
perceptions. Third, all 13 essays were analyzed with these four themes with specific text 
highlighted that referred to student perceptions of proof. In the fourth and final step, individual 
student summaries were written. The second author used the developed coding scheme to 
double-code four of the essays (30% of the dataset). Each essay could receive a total of eight 
codes, corresponding to four constructs for each of past and prior experiences (and there were 4 
essays, for a total of 32 coded units). The single disagreement was resolved through discussion 
(for an agreement rate of 31/32). 



 
Table 2. Perceptions codes. 
Code Evidence Example 
Connection Student describes feelings of ownership, personal 

connection, agency, or control. Student describes 
collaboration or peer support.  

“Proof has begun to 
feel personal” 

Exploration Student describes practices of proving: generating 
ideas, articulating reasoning, or revision. Student 
describes figuring something out, not just memorizing. 

"I can figure it out on 
my own rather than 
look it up online." 

Alienation Student describes negative emotions (e.g., frustration, 
confusion, trauma) or the inaccessibility of 
mathematics (e.g., isolation, exclusion, or elitism).  

“I also had a traumatic 
experience” 

Memorization Students describes memorizing or copying from the 
Internet as a learning or teaching strategy. 

“All you have to do is 
memorize all these 
proofs” 

 
 Distance. After coding student transcripts according to sensemaking and perceptions, we 
completed another round of analysis that focused on distance. Here, we identified portions of the 
transcript of interest, and categorized them according to type of distance. All categorizations and 
inferences were discussed together by the author team. 
 

Results: Student Sensemaking 
 

 The results of this section answer the research question: What role did various forms of 
distance play in students’ sensemaking practices? To answer this question, we begin with two 
extended episodes from student conferences that highlight multiple types of sensemaking (in 
bold) and how they related to multiple types of distance (in italics). For ease of interpretation, 
both episodes come from the same homework problem, which was focused on uniform 
continuity.1 In particular, students were asked to:  
 

1) informally describe the difference between continuity and uniform continuity;  
2) find all intervals on which f(x) = x2 (defined on R) is continuous; 
3) find all intervals on which f(x) = x2 (defined on R) is uniformly continuous;  
 

and prove their results using the definitions of continuity, uniform continuity, and their 
negations. Only a single student provided a complete and correct proof that f(x) = x2 is uniformly 
continuous on any closed and bounded finite interval (and not uniformly continuous on R).  
 
Episode 1: Negotiating tentative understandings and an external authority 

 
1 Continuity: Let f: D → R, where D is a subset of R. We say that f is continuous on D, if for 
every x0 in D, f is continuous at x0. We say f is continuous at x0 if, for every ε > 0 there exists a 𝛿 
> 0 such that for all x in D with |x - x0|< 𝛿, |f(x) – f(x0)| < ε.   
Uniform continuity: Let f: D → R, where D is a subset of R. We say that f is uniformly 
continuous on D, if for every ε > 0 there exists a 𝛿 > 0 such that for all s,t in D with |s-t|< 𝛿, |f(s) 
– f(t)| < ε.   



  The episode focused primarily on parts 2 and 3 of the problem. This episode (organized 
in four segments) shows how Jane and Elayne moved back and forth between their own tentative 
understandings (made safe through epistemic and ontological distance, in Segments 1 & 3) and 
ideas presented from an external authority (at a further rhetorical distance, in Segments 2 & 4).  
 Segment 1 focused on understanding when negation would be required for the proof’s 
justification. Early in the conference, Jane stated that she doubted her draft solution, because she 
had not used the negation of the definition of uniform continuity in her proof.  
 
 Segment 1. 

1. Jane: I think my proof was fine, but I've only shown that it is uniformly continuous on 
[0,1] 

2. Elayne: Okay. 
3. Jane: I don't think it's continuous over [all real numbers], but I didn't use the negation, 

yeah, I didn't do this part, of showing, proving it through negation. 
 
By listening to Jane’s tone of voice when she said “fine,” it was clear that she was indicating that 
she felt she had an acceptable proof, but not an excellent proof. Thus, this statement created 
epistemic distance, by signaling tentative confidence in her draft. Further, her statement “I didn’t 
do this part” indicates that she recognized her attempted proof was incomplete. By describing 
what she did on paper, rather than stating her thinking directly, she created ontological distance, 
because it was safer to discuss why her previous justification was lacking, as compared to her 
current thinking. These two conversational moves created a productive environment for the 
student to discuss their emergent understandings. 
 A nearby student, Mindy, then interjected, asking whether or not negation was needed for 
the second part of the problem, noting that f(x) = x2 was “continuous on all reals.” Moving into 
Segment 2 we see the role of rhetorical distance, as the students appealed to the professor as an 
authority. In this segment, the students reached a consensus on when to use the definitions and 
negations of the definitions of continuity and uniform continuity. 
 
 Segment 2. 

1. Jane: Kelly [another student] was asking about that. [The Professor] said if it's true [that 
the function is continuous on all reals] then you don't have to prove the negation…[I]n 
[part] 2 I showed that it was continuous over all the reals, and that's true, so there's 
nothing to negate. 

2. Elayne: Okay. 
3. Jane: But here [on part 3] I don't think it's true for all the reals, so I need to- 
4. Elayne: Prove the negation. 

 
Here, the students agreed that the negation of the definition of continuity would not be required, 
because the function f(x) = x2 was continuous for all real numbers, so it was unnecessary to show 
it was not continuous somewhere. In contrast, the students recognized that f(x) was not uniformly 
continuous for all reals, so they would need to use the negation of the definition to prove that it 
was not uniformly continuous on the appropriate intervals. This focused on justification, that is, 
what exactly would be needed to justify the intervals of uniform continuity and the intervals over 
which the function was not uniformly continuous. Here, multiple types of rhetorical distance 
helped the students coordinate their emergent thinking with an external authority.  



 Segment 3 focused primarily on the logic of the argument, as the students attempted to 
negate the definition of uniform continuity. Because the students were unsure of the appropriate 
logic, we see multiple conversational moves where Elayne creates epistemic distance. This 
happens in line 1 when Elayne says “right?” to convert a mathematical assertion into a 
suggestion/question, and in line 5, when she says “yeah?” after suggesting that the quantifiers 
should be flipped. In this way, couching her mathematical ideas as questions allowed Elayne to 
participate more safely.  
 
 Segment 3. 

1. Elayne: 'For every' means for all, right? 'For every' means there's some [in the negation]. 
Right? Wouldn't it? 

2. Jane: So the negation, yeah, 'for every' means there's some [Elayne annotating the 
negation]. 

3. Elayne: There's some. And then it doesn't exist- 
4. Jane: Yeah, does not exist. 
5. Elayne: Such that- these ones we flip them [referring to quantifiers], yeah? 
6. Jane: Ooh, I don't think so.  
7. Elayne: I think I remember something like that from last time. 

  
Here, Elayne clarified the meaning of “for every,” asking if it has the same mathematical status 
as “for all.” The students then continued to discuss the logic of how to negate the definition. 
Elayne suggested they “flip” the quantifiers (swapping “for every” and “there exists”), which she 
“remembered” from a previous class period. Jane disagreed, saying “Ooh, I don’t think so.” As 
the students worked out the negation, Elayne annotated Jane’s paper with the negated definition 
for later reference.  

At this point, the Professor came over to the students’ table. Jane mentioned that they 
“have a hunch,” how to do the negation, but they want to make sure the logic is correct. The 
Professor made comments that reinforced Elayne’s suggestion for “flipping” the quantifiers, 
according to the procedure learned earlier in class. As the Professor left, the students continued 
to work into Segment 4. Again, we see that introduction of an idea from an authority (a higher 
rhetorical distance) supported the students to return to more tentative sensemaking at lower 
levels of rhetorical distance (i.e. their own work). 
 
 Segment 4. 

1. Jane: This reminds me of the keywords approach that we, like, tsk tsked.  
2. Elayne: See how here they have, we have, this is like the original one. But then here it's 

flipped and the equals added. Yeah, so I remember that from last time. 
3. Jane: Oh, good call, good call, okay.  

 
When Jane said they “tsk tsked” the “keywords approach,” she was describing how she 
previously rejected the method taught by the Professor. Jane’s statement “good call, good call” 
indicates that she now realizes that Elayne’s initial suggestion was a productive one, even though 
she initially disagreed with it. This highlights how at the rhetorical distance of a peer, students 
are more likely to be able to disagree with a claim, but that disagreement can change over time. 
In both Segments 3 and 4, the students discussed the use of a previous technique, which signifies 
a holistic aspect of their sensemaking.  



 Although neither Jane nor Elayne correctly solved the problem, there was still progress 
made during their peer conference, which resulted from them having space to struggle with and 
make sense of the proof. For instance, in Jane’s initial draft, she wrote that, 
 

I suspect that f(x) = x2 is not uniformly continuous on R based off of result from part 2, 
that delta depends on x0. Informally, there will be a delta that holds that for every x0.  
 

Here, Jane argued that because the delta interval will depend on where on the real line the input 
(x0) is, it will not be possible to find a single delta to show uniform continuity over all real 
numbers. Jane then sketched out a proof of uniform continuity on [0,1] showing how to bound 
|f(s) – f(t)| using |s| and |t| and then stated,  
 

However, since we cannot restrict |s| and |t| over the reals, so f(x) is not uniformly 
continuous over R. 

 
Essentially, her informal argument was that because the argument used to prove uniform 
continuity on [0,1] could not be used over all of R, f(x) could not be uniformly continuous on R. 
Of course, this reasoning is flawed (even though f(x) = x2 is, in fact, not uniformly continuous on 
the reals). In her revised work (post peer conference), rather than the informal argument, Jane 
correctly negated the definition of uniform continuity and attempted to prove the intervals over 
which f(x) = x2 was not uniformly continuous. Nonetheless, she got stuck and never constructed a 
correct proof. 
 Jane provided written feedback through annotations of Elayne’s initial draft, which also 
provided some insight into her sensemaking. In multiple cases, she noted where Elayne needed 
to “specify the domain,” or clarify “x, x0 in D.” She also suggested that for the proof of uniform 
continuity, that Elayne should “choose a closed interval that is bounded.” This particular 
comment provides deeper insight into Jane’s thinking, because in her own written work she 
never attempted to prove where f(x) was uniformly continuous, only that it was not uniformly 
continuous on all reals. As we can see based on Jane’s written feedback, even though Elayne did 
provide productive assistance to Jane during the conference, Jane was still able to see meaningful 
areas of improvement for Elayne’s work. This is the value of a partially correct attempted proof 
used in peer review. 
 In summary, the ontological and epistemic distance created in Segment 1 created space 
for Elayne and Jane to engage with meaning, logic, and justification without fear of being 
wrong. Later, in Segment 3, Jane disagreed with the suggestion of her peer, until Segment 4, 
when the same approach was advocated by the Professor. In this way, Jane deflected the 
suggestion of her peer who had less authority, and then later accepted the external authority 
(related to rhetorical distance). This highlights how rhetorical distance mediates a students’ 
willingness to challenge a claim. Thus, we see how epistemic and ontological distance were used 
to support tentative sensemaking in Segments 1 and 3, and then rhetorical distance was used to 
support validation from an external authority in Segments 2 and 4. The peer review context made 
this back-and-forth possible in a seamless way. 
 
Episode 2: Using written work to externalize ideas 
 The second episode (broken into five segments) provides multiple examples of how 
ontological distance created a productive setting for sensemaking, as Landon and John referred 



to their externalized ideas. In Segment 1, John describes how he wrote his work (past tense 
emphasized), and in Segments 2 and 4 the students discussed Landon’s annotations of that work. 
This set them up for a later conversation with the Professor in Segment 5, where they could refer 
to their externalized work. 
 
 Segment 1. 

1. Landon: I see you have uniform continuity applies to a single epsilon band across the 
entire function. So, when you say a single epsilon band across the entire function 
simultaneously, it's- you're saying that we're still focused on the point- 

2. John: But those- you're focused on two points, but those points are both allowed to 
float, is the way I wrote it. 

3. Landon: Oh, okay. 
4. John: Those points- it has to be able to hold- so basically you can say I want you to 

be- the challenger can say I want you to be within this epsilon, I want the distance 
between any two y values to be within this epsilon distance, or be less than this 
epsilon, and then you can respond for a difference between x values that will get you 
there, but for any two y values. So, you're supposed to be able to limit the dist- at least 
that's how I read it, and I might be way off on that but that's how I'm reading it, is that 
it's saying that- 

 
Here, John described a particular way to make meaning of the definition. He conceptualized a 
challenger giving him an error tolerance epsilon, to which he needed to respond with an 
appropriate delta. When he referred to “a single band,” he meant that the error tolerance was 
something that was applied to the function globally, rather than locally at each point as with 
continuity. John created ontological distance by describing the way he “wrote” his work, 
allowing for John and Landon to discuss the meaning of uniform continuity. As John provided an 
extended explanation, he added the hedging language “I might be way off but that’s how I’m 
reading it,” which created epistemic distance. In Segment 2, both students tried to make deeper 
meaning of this conceptualization by thinking about what would happen in the case of an 
exponential and a quadratic function (the latter of which was written on John’s initial draft as an 
annotation by his partner Landon). 
 
 Segment 2. 

1. John: Your f(x)s are going to be really far apart while your xs are going to be close to 
each other.  

2. … 
3. Landon: Just from like here to here our fs are pretty close. 
4. John: Right, right. 
5. Landon: Right? But then as we go out, say this one, our xs are going to be quite a bit 

farther away. 
6. John: Yeah. Which is actually something similar, less drastic, but that happens with x 

squared. 
7. Landon: Right, this is- Yeah, so what I've done is say this is the x squared graph as an 

example, that the distances between f(x)s are- 
8. John: Right. 



9. Landon: -going to be changing. So are we trying to say that maybe the f(x) equals x 
squared is not uniformly continuous? 

10. John: Yeah, I would argue that. I mean the function itself is definitely continuous. 
 
Here, the students pointed to various regions of the exponential function and quadratic function 
to coordinate how the changes in the function’s output value differed depending on the location 
of the inputs on the x-axis. Landon’s annotation provided another form of ontological distance, 
because it allowed Landon to externalize his idea onto the draft, which could then later be 
constructively critiqued by both students. This critique resulted in the development of a visual 
argument, which led the students to assert that f(x) = x2 would not be uniformly continuous on R, 
because the graph becomes increasingly steeper as x increases. Still, Landon’s question “are we 
trying to say…” created a form of epistemic distance. It signaled that the students were coming 
to an emergent consensus, but it would still be acceptable to change their minds later. 

In Segment 3, the conversation shifted from using this intuitive understanding to actually 
constructing a formal proof.  
 
 Segment 3. 

1. Landon: Coming up with a delta is kind of an odd situation. 
2. John: Right. 
3. Landon: I actually did that on my last [peer review problem] because [f(x) = x2] was 

one of the functions that I chose. So my delta was also in terms of epsilon. 
 
Here Landon referred to work that he did to find a delta interval for proving the continuity of f(x) 
= x2 in a previous problem, which involved finding a delta interval that depended on epsilon. 
Thinking holistically, he was now aiming to do something similar on the current problem. As the 
conversation continued, the students spent a considerable amount of time working through the 
mechanics of how to find a delta interval. Much of this scratch work was written on John’s initial 
draft by Landon (again, related to ontological distance). The students then revisited their 
intuitive meaning making in Segment 4, by looking at input values x and c for the function. 
 
 Segment 4. 

1. John: But in this context is that really what's happening? 
2. Landon: Well I don't think that c is approaching x, what we're trying to say is that no 

matter how close c gets to x we'll always be able to have a distance- we're always 
going to have another, like, [region where] the y values that are within an epsilon 
distance. 

3. John: Okay. 
4. Landon: Right, because generally if someone were to ask you is this continuous at 

this point, you'd be like yeah. But as we, you know, as we move, say, I don't know, to 
x, if this is x plus c, as we go this way it's like we're going to keep finding values and 
it's fine. But if this was x minus c eventually someone's saying that if you're trying to 
argue that it's not continuous, you're going to eventually find a delta- 

 
Here, Landon attempted to clarify the meaning of x and c in his formal argument, describing 
how for a continuous function it would be possible to bound the change in the output, but for a 
function that is not uniformly continuous, there would eventually be a delta for which the change 



cannot be bounded. (In fact, it would be impossible to bound the change in output no matter 
which delta was chosen, because the delta interval could simply be positioned around sufficiently 
large values on the x-axis). After this discussion, the Professor came to the students, and in 
Segment 5, the students tried to make deeper meaning of uniform continuity with him.  
 
 Segment 5. 

1. John: We both feel like we have a pretty strong understanding of continuity…But 
uniform continuity we're struggling with a little bit…I'm struggling with a way to show 
where- because I feel like with x squared, for example, that y's getting larger and larger, 
further and further apart. 

2. Professor: Right. 
3. John: So because it eventually- I mean I'm trying to find a way, can we just choose a 

really big one and it'll still work for the small one? 
4. … 
5. Professor: What's going on with the continuous case is if someone gives you a point you 

can bound the amount of change by staying within [a particular region]. So, it's sort of 
like locally the steepness is bounded there. But the problem is, like, x squared, the 
steepness is not bounded. You can get [f(x)] as steep as you want by simply going up far 
enough [in x]. 

6. … 
7. Landon: Right, the distance between the f(x) and f(c) is going to grow depending on how 

far x goes. 
8. John: Right 

 
In this segment, the students expressed their confusion in line 1 when they described they were 
struggling (creating epistemic distance from their tentative claims), and also suggested a possible 
path forward to the Professor. The Professor validated the students’ idea (from the rhetorical 
distance of an authority), and this idea was ultimately what the students wrote in their 
submissions. In John’s draft, he only had brief scratch work that was intended to support a proof 
that f(x) was uniformly continuous on [-1,1], but he didn’t offer a formal proof. In the revised 
work, John provided a mostly correct proof of uniform continuity on [-1,1]. He also attempted to 
prove that f(x) was not uniformly continuous on (1, ¥), and (-¥, -1). Although he was able to use 
the correct negation of the definition, he got lost in the mechanics of the proof and did not 
complete it. In addition, John did not realize that x2 would be uniformly continuous on any 
closed and bounded finite interval. 
 Again, we summarize how distance was relevant to sensemaking. In Segment 1, John 
described what he wrote in his work (ontological distance) and created epistemic distance from 
his assertion, stating “that’s how I read it, and I might be way off.” Throughout the interaction, 
John and Landon built on each other’s ideas as relatively equal peers (facilitated by their 
rhetorical distance from one another’s ideas). This was supported by Landon’s annotation, 
which created ontological distance from the idea, allowing both students to constructively 
critique it. As the students worked through the ideas in Segment 2, John took up Landon’s idea 
that f(x) would not be uniformly continuous due to the increasing steepness of the function. 
Finally, in Segment 5, the role of the Professor as an authority (at greater rhetorical distance) 
helped the students feel more confident to follow through with their proposed approach.  
 



Quantitative Results 
 
 The above two episodes highlighted the prevalence of multiple forms of sensemaking 
across different conferences. (The first episode highlighted justification, logic, and holistic, 
while the second episode highlighted meaning and holistic.) Next, we performed quantitative 
analysis to capture the prevalence of sensemaking forms (see Table 3).  
 
Table 3. Student sensemaking of proofs (N=20 conferences). 

Sensemaking practice Number of conferences containing this practice 
Meaning 17 

Logic 10 
Justification 20 

Holistic 11 
 
We hypothesize that these practices were prevalent across a variety of conferences given the 
nature of peer-review conferences. Because students entered the conference with their own 
attempted proofs, it created an ontological distance that allowed the students to easily use their 
existing work as a starting point for developing deeper understanding. This contrasted the more 
free-form nature of group work, in which students are collaboratively constructing the solution 
together, and the draft work is not distinctively positioned as an external artifact. In addition, the 
inclusion of ideas from sources at a variety of rhetorical distances allowed students to coordinate 
both emergent ideas and ideas that are assumed to be correct, while epistemic distance created 
space for more tentative discussion, pushback, and revision.  
 

Results: Perceptions of Proof 
 The results in this section address the following research question: How are forms of 
distance and sensemaking practices related to students’ perceptions of proof? The following 
analyses focused on how students developed perceptions of proof, both through the present 
course and their prior courses. The results indicated that students developed different perceptions 
based on their engagement with peer review, as compared to their engagement in prior courses. 
A summary of codes is given in Table 4.2 
 
Table 4. The number of essays containing each type of student perception (N = 13 essays total).  
 Peer Review Prior Courses 
Connection 11 1 
Exploration 8 1 
Alienation - 9 
Memorization - 9 
 
Peer Review Experiences 
 Students described how their sensemaking in peer-review conferences influenced their 
perceptions of proof. By coordinating various forms of distance in the sensemaking process, 
students were able to safely explore the tentativeness of back-door mathematics. Students 

 
2 A single student discussed deep engagement in a prior inquiry-based proof course. This was the 
only instance of connection and exploration in the Prior Courses category. 



described their proofs as something that belonged to them (a lower level of rhetorical distance), 
rather than an external authority. 
 
 Connection. Peer review helped students feel connected to their own proofs. By 
expressing mathematical ideas both formally and informally (e.g., through their conferences, or 
by using a two-column format), students could create epistemic distance that allowed them to 
safely explore mathematical proofs. Similarly, the creation of drafts created a productive 
ontological distance, as students were sanctioned to engage with the same proof multiple times. 

John described how peer review had “completely changed the way [he] approach[ed] 
proofs,” making proof “feel personal.” He attributed this to the “annotations column and its free 
form” that gave him “a voice and choice in proof that didn't exist prior.” Similarly, Elayne 
discussed how she could “understand and interpret” her own proofs, 
 

I think it was very helpful to not have an emphasis on simply providing a correct proof, 
rather on providing a proof that I was able to understand and interpret. It made me see 
writing proofs as something that I am capable of doing. 

 
The opportunity to receive feedback and revise removed the pressure of “simply providing a 
correct proof,” which allowed Elayne to instead focus on sensemaking. Matt also discussed how 
peer review gave an opportunity to “at least try to make sense of what [he] was trying to prove.” 
Matt acknowledged that his attempted proofs might not be completely correct, but at least he 
“could create a logical argument” and use proof to “create new meanings and understandings.”  
 
 Exploration. The iterative peer review process highlighted the tentative nature of proof. 
For instance, Mindy described how it helped her “figure [a proof] out” on her own, rather than 
“look it up online.” Similarly, Melvin contrasted the goal of “proving things” with simply having 
a “proof itself.” He considered peer review as “a big part of the reason [he] looked at proofs 
differently in this course.” John explicitly discussed the role of revision, and how it removed the 
fear of failure, 
 

Having the opportunity to review a draft with a peer and then revise my work has taken 
the fear of failure out of the process. How does one fail a draft? The process also makes 
my own growth undeniable when I compare many of my drafts to their revised 
counterparts. 

 
Mindy, Melvin, and John all highlighted the importance of making sense of a proof, rather than 
just having a proof. Because they could attempt proofs, receive feedback, and revise, this 
sensemaking was sanctioned as an important part of the course. John’s statement, in particular, 
draws attention to the importance of ontological distance, which can be created by the unique 
nature of having a draft solution as an artifact to engage with during the peer review conferences. 
 
Prior Experiences 
 Students associated their prior experiences in proof-based courses with alienation and 
memorization. In this context, proof was perceived as belonging to the teacher or textbook (a 
larger rhetorical distance), which contributed to feelings of a lack of ownership. 
 



 Alienation. Landon expressed frustration with disconnection from “elite” 
mathematicians, 
 

Although book-publishing mathematicians enjoy entertaining the elite few who do not 
toil underneath the deceptively succinct, clever, and often counterintuitive prose that lies 
between Proof: and QED, undergraduate and graduate level mathematicians need a more 
accessible way to eat their proof pudding, so to speak. 

 
Landon’s description of “entertaining the elite few” painted a picture that mathematics is done by 
people who are not like him. John also described frustration with the expectation he should 
“conform to rigid conventions and opinions of elegance.” John was careful to emphasize that 
proofs should not “become less rigorous,” but that there was a need to “delete the exclusionary 
elitism” from proof instruction.  
 Kelly described a perceived arbitrariness to grading in her prior courses, and the need to 
conform to what “the professor expected.” Nicola also described her experience with a student 
grader who would give “extremely low homework grades” because “he didn’t like” the way she 
wrote her proofs. Her perception was that she wrote “too much and he wouldn’t even try to make 
sense of it.” These experiences suggest that while students may have been exposed to front-door 
mathematics, they may have had insufficient opportunities to tentatively explore back-door 
mathematics in the making. The discussion of mathematics as belonging to an external authority 
highlights a high level of rhetorical distance between students and their proofs. 
 
 Memorization. Students described memorization as a key strategy to succeed in prior 
courses. For instance, Mindy memorized proofs “without really understanding” what she was 
memorizing, and if she “had to write [her] own proof,” she would “first find it online.” Similarly, 
Brigette described how she would “memorize the proofs in order take tests without 
understanding questions, steps, and answers.” In both of these cases, the proofs did not really 
belong to the students, but they were ideas copied from an authority (high rhetorical distance). 
Other students, like Olivia, described how memorization was reinforced by their instructors, 
 

The professor said, “All you have to do is memorize all these proofs and you will be 
fine.” In fact, I passed Calculus solely on the fact that I have the skill of regurgitating 
information. 

 
Mindy’s reflection draws attention to the explicit ways that learning environments might 
promote a memorization approach, which complements the subtler implicit messages that a 
learning environment might convey. 
 

Limitations 
 While our study focused on opportunities for sensemaking and resulting changes in 
perceptions of proof, our study design did not allow us to document the extent to which students 
improved their understanding of real analysis concepts. Moreover, given the variability in 
content areas (e.g., space-filling curves vs. Fourier series) and homework problem difficulties, it 
was not possible to make claims about student growth in sensemaking practices. In addition, 
because the first author was the instructor in the course, there may be some bias in how the 
students described their experiences with peer review. However, given that student responses to 



the anonymous course survey (submitted to the university) were also uniformly positive, the 
impact of this bias is likely small. We also recognize that student perceptions of mathematics 
were due both to peer review and the collaborative nature of the course, and it is difficult to 
disentangle the two. Lastly, we recognize that there is some level of subjectivity in interpreting 
students’ statements, and we cannot be 100% certain of our interpretations of student talk. 
 

Summary and Implications 
 
 This study connected sensemaking practices and perceptions of proof through student 
engagement in peer-review conferences mediated by various forms of distance. Peer review 
conferences provided a context for students to engage with idea from an authority, from peers, 
and their own ideas (i.e. multiple rhetorical distances). Ontological distance between students 
and their drafts provided a productive basis for conversations, and students created epistemic 
distance to safely work through their tentative ideas as conferences unfolded. This study makes 
important theoretical contributions to the study of proof, both by introducing the new concept of 
ontological distance, and also by empirically documenting the role of various forms of distance 
in sensemaking of proofs. Our model adds complexity to the conceptualization of proof 
comprehension and validation, by highlighting the role of the social environment in which 
students learn to make sense of proofs. This research has at least three implications for 
mathematics education. 
 First, we found that the majority of peer review conferences contained all four 
sensemaking practices (meaning, logic, justification, and holistic). This suggests that peer 
review conferences can be a productive venue for students to learn to make sense of proofs. This 
has pedagogical utility for instructors teaching proof and also for researchers who would like to 
study the development of proof sensemaking practices. Although it was beyond the scope of this 
study, we believe that studying the growth of student sensemaking practices over time is a 
productive area for future research. 
 Second, we provide insight into the role of distance in sensemaking. When students 
intentionally created distance from particular claims, they created a safe space to explore their 
partial understandings (i.e. back-door mathematics). Then, by strategically incorporating ideas 
from an external authority (i.e. front-door mathematics), students were able to validate their ideas 
while still retaining ownership over their thinking. By coordinating front-door and back-door 
engagement, students were able to develop a more positive perception of proof. By design, peer 
review conferences easily incorporate a variety of forms of distance in a way that differs from 
standard group problem solving or traditional lecture alone. Of particular importance is the 
existence of a draft solution, which supports the creation of ontological distance. This new 
construct can also be generalized to other contexts. For instance, it could be used to understand 
the use of other artifacts, such as whiteboards, and how they might impact student sensemaking. 
 Third, the student essays highlight that these students completed their undergraduate 
degrees in mathematics and pursue graduate studies in spite of their negative experiences with 
proof. While prior research highlights how mathematics can alienate students and push them 
towards studying other subjects (Ernest, 1992), this finding suggests that even students who do 
choose to continue pursuing mathematics may feel alienated. It would be worthwhile to 
understand in future studies why students like these chose to persist. Especially given that most 
participants in the study were either practicing teachers or had future aspirations to teach 



mathematics (at the secondary or post-secondary levels), it is paramount that mathematics 
education also serves to inspire them, so that they can also inspire future generations of learners.  
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