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Abstract: This article describes an inquiry-oriented real analysis classroom in which students 
were guided to discover mathematics for themselves. To support student inquiry, the framework 
of “five practices” from K-12 education was used. To illustrate this framework, two case 
examples are given from actual discussions that took place in this classroom. These examples 
focus on student construction of sequences of functions, both the space-filling Z-order curve and 
the Cantor staircase function. The article closes with practical guidance for other instructors who 
would use the five practices in their higher-level mathematics courses. 
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Introduction 

This paper describes the application of the “five practices” framework for orchestrating 

discussions [1, 2] to higher-level mathematics. In the same way that a skilled politician can 

anticipate the outcome before they call an issue to a vote, an instructor needs to know what 

contributions students are likely to make before bringing the class together for discussion. Such 

knowledge allows an instructor to weave together student contributions in a way that they 

meaningfully build on each other. The five practices are concrete tools that an instructor can use 

to anticipate and guide a discussion along a desired course.  

Developed in K-12 mathematics classrooms, these practices are still extremely relevant to 

higher-level mathematics. This article illustrates the five practices using two actual lessons 

taught by the author that took place in a graduate-level analysis course. It closes with practical 

guidance for other instructors to use these practices in their own classrooms. 

 

Introducing the Five Practices 

Classroom discussions are a critical part of learning [3–7]. But simply speaking is not 

enough; students need to engage in high-level, cognitively-demanding discourse [8, 9]. Given the 

complexity of managing social interactions, subtle inequities often emerge in who gets to 

participate and how they get to participate [e.g., 10–12]. Described below, the five practices are 

one set of techniques an instructor can use to support high-level discourse and help address these 

inequities, by carefully choosing which students get to share their ideas and how the ideas are 

taken up by the class. 

The five practices are: anticipating, monitoring, selecting, sequencing, and connecting [1, 

2]. The practices are generally used in a lesson structure that consists of three phases: launch, 



exploration, and discussion [2]. During the launch phase, the instructor provides relevant 

background information and orients students to the mathematical task at hand. The exploration 

phase consists of students working together (typically in small groups) for the bulk of the lesson. 

The lesson ends with a discussion that allows students to share their thinking across groups, with 

the support of the instructor, to tie the mathematical ideas together. While the five practices are 

tailored for such a lesson structure, they are general tools that can be used in a variety of settings. 

The first practice is anticipating. Before teaching a lesson, an instructor anticipates 

possible student responses to a task. The first time a lesson is taught, an instructor may have 

limited insight into how students will engage with the relevant mathematics. Talking to other 

instructors or consulting the research literature can be helpful, as time permits. The second time a 

lesson is taught, anticipating becomes easier. When an instructor teaches a lesson, they can save 

samples of student work and keep fieldnotes describing areas of struggle and insight, which 

support anticipation for the next iteration of the lesson. The lessons described in this paper were 

both taught for the first time by the author, so anticipating student thinking was a challenge. In 

brief reflections after the lessons, I describe how the lessons could be adapted when used again. 

The second practice is monitoring. This practice takes place while students are exploring 

the mathematical task. In addition to helping students progress on the task at hand, an instructor 

also monitors student thinking, taking notes that describe: their approaches, what false starts they 

have, their productive breakthroughs, etc. Logistically, this can be achieved by carrying a 

notepad or clipboard during instructional time to write down what students are doing. If an 

instructor uses this approach, they should communicate to the students why they are taking notes, 

to make sure that students feel comfortable. The purpose is not to judge student work, but to help 

document their productive thinking so it can be shared with the class. 



The third practice is selecting. As an instructor becomes aware of the ways in which 

different groups of students are thinking, the instructor must choose which student ideas to 

highlight in the plenary discussion. This could be any combination of struggles, insights, or 

alternative solution methods. When selecting particular student ideas, the instructor should give 

students an advance notice that their ideas will be showcased in the plenary discussion. By 

encouraging students to share, and asking for permission to use their ideas, an instructor can 

make it more comfortable for a greater variety of students to speak in the plenary. Giving an 

advance notice in this way avoids putting students on the spot. This is one small way that an 

instructor can use the five practices to help encourage greater equity in classroom participation. 

The fourth practice is sequencing. Beyond figuring out which ideas to share, an instructor 

chooses the order in which they will be shared. One strategy for sequencing student responses is 

to begin with more concrete solution strategies and move up levels of abstraction. Another 

strategy is to begin with specific examples and move to general arguments. By appropriately 

sequencing student responses, an instructor opens space for more students to share their ideas 

with the class. This provides opportunities to elevate the status of lower-status students [13], 

because they can be given opportunities to meaningfully contribute to the discussion even if they 

do not have an entirely complete solution. In contrast, if the first student to share their thinking 

gives a complete analytic solution, it tends to shut down further conversation and leaves little 

room for students to discuss false starts, potential paths that did not follow to completion, and so 

on. Of course, carefully sequencing student ideas is insufficient to address issues of classroom 

equity, but it is one useful tool. 

The above four practices all take place before a discussion begins. If an instructor has 

been successful in monitoring, selecting, and sequencing students to share their ideas, a 



productive discussion is much more likely to result. The fifth practice is connecting. As students 

share their ideas, the instructor helps explicitly bring the ideas together, highlighting how the 

ideas may build on one another or contrast each other.  

 

Method 

This paper focuses on an inquiry-oriented analysis course taught for the first time by the 

author. This graduate-level course was designed for students in a teaching-focused Master’s 

degree program in the US. A total of 13 students were enrolled in the course, all who consented 

to participate in the study. There were five in-service teachers, five Graduate Teaching Assistants 

(GTAs), and three prospective teachers who were not yet teaching. All student work was 

collected, but classroom sessions were not video recorded. As such, the primary data sources for 

this article are student work, lesson plans, and instructor notes written during and after class. 

Students worked in teams organized by principles of team-based learning, including static 

groups, team-based assignments, and team contracts [14]. There were four teams in the class: 

The Mathletes, The Angles, Function Families, and Cauchy’s Island. These names were chosen 

by the students, and are used to refer to the work of different groups throughout the paper below. 

As teams, students used a variety of media to engage in mathematics, including whiteboards, 

sidewalk chalk, and construction paper, as appropriate (see Figure 1 for an example of students 

working together on an inquiry task). Students also engaged in Peer-Assisted Reflection [PAR; 

15], a structured review process, but it is not the focus of this article.  

<Insert Figure 1> 

In the following two sections, I introduce the relevant mathematics to situate the 

discussion of student thinking. I then describe how I launched the task and discuss my use of the 



five practices to facilitate classroom engagement. Finally, I close with brief reflections on 

lessons learned and possible modifications to the lessons. 

 

Space-Filling Curves 

Launching the Task 

The first activity focused on student constructions of the Lebesgue curve. Like other 

space-filling curves, the Lebesgue curve can be defined as the limit of a sequence of functions 

that cover a unit square by repeatedly subdividing the square (by fourths in this case). To 

construct a map that converges, the curve must traverse the unit square through these 

subdivisions along an appropriate path. The path for the Lebesgue curve represents a Z-shape, so 

the Lebesgue curve is also called a Z-order curve. 

The Lebesgue curve also provides a mapping from the Cantor middle thirds set to the unit 

square. This is done by associating a binary expansion with each subdivision of the square. 

Because the Cantor set consists of all ternary expansions containing only the digits 0 and 2 (the 

1’s are the middle thirds that are successively removed), the Cantor set can be described in its 

entirety using binary expansions, where all 2s are replaced by 1s. Thus, students began the 

problem with two representations at their disposal: a Z-shaped path for the curve, and binary 

expansions associated with each subdivision of the square. See Figure 2 for a student illustration 

of this pattern. 

 To launch the exploration, I introduced the Lebesgue curve by demonstrating how the 

mapping works for four subdivisions of the unit square. Students were provided with the binary 

and decimal numbering of the squares, as in Figure 2. I also provided the next iteration of the 

sequence, with the curve drawn and binary expansions written (but not the decimal equivalents). 



Students were told to find the next members in the sequence of functions, and once they had 

discovered how to construct an arbitrary member of the sequence, they were told to explore the 

properties of this sequence of functions. As was typical in this class, students were guided by 

their instructor to explore different mathematical properties through an open-ended task. The five 

practices are highlighted below in italics. 

 

<Insert Figure 2> 

 

Using the Five Practices 

Although I had never taught this task before, in previous lessons I monitored students 

working with the Cantor set, ternary expansions, and the Hilbert space-filling curve, so I had 

some idea of how they would engage in the present task. During those prior lessons, I had 

learned that only a few students (e.g., Melvin in the group Mathletes) had much experience 

working with binary. For this reason, I assumed that students may need extra support with 

binary. One concrete way this manifested in my teaching was that I provided students with both 

the binary and decimal descriptions of each subdivision of the square (as described above), even 

though the decimal expansions were mathematically unnecessary. 

During student work time, I circulated around the room to monitor student thinking. To 

begin, most of the student groups tried to convert the binary expansions in the second-order 

curve to decimal. Function Families noticed that the binary expansions were just counting up as 

one followed the curve through the 16 subdivisions of the unit square, so rather than actually 

performing the conversions, they just filled out the numbers 1 to 15 in the subdivided squares. 

Other groups soon noticed this too. In contrast, the Angles looked at binary expansions moving 



from left to right (like in reading), rather than following the curve. Thus, they did not notice this 

pattern and instead individually converted each of the expansions from binary to decimal. If the 

group was to continue in this way, it would be a long, tedious task, and they would not actually 

have a chance to grapple with the meaningful mathematics I had hoped them to spend time with. 

Accordingly, I mentioned to the Angles that I had seen other groups looking at the expansions in 

different orders, and suggested that the Angles might also see if they could find any patterns to 

simplify their work. I selected this thinking as something to return to later, to highlight a general 

problem-solving strategy that students might use (following the curve to think systematically).  

As I monitored the groups, I worked out an order to sequence student ideas. I noticed that 

some groups (particularly Cauchy’s Island) had quickly moved to more general arguments while 

other groups were still making sense of the problem situation. Thus, I decided to sequence 

student ideas according to the generality of the approach, so that students could see the work of 

one group as building on the next, rather than shutting down discussion by looking at the “best” 

answer right away. I present student ideas below in the order that I chose to sequence them, not 

the order that I encountered them in. 

The Mathletes spent a lot of time trying to draw out the third-order function (with 64 

squares), without even looking at the binary expansions in the squares. Without binary 

expansions to help identify different subdivisions, the group made a number of errors due to the 

complexity of the drawing and was unable to find a path to connect the squares. After I discussed 

their approach with them, the Mathletes eventually developed a strategy to determine the 

numbers for each of the 64 squares in the third-order curve. This supported them to successfully 

draw the function. Ironically, Melvin, who was familiar with binary was a member of this group, 

yet his group chose not to use binary, which resulted in difficulty. 



Function Families focused on the 1-2-3-4 pattern that the first-order curve used to 

traverse the four subdivisions (top-left, top-right, bottom-left, bottom-right). They then noticed 

that this same pattern was recursive within the next iteration (the second-order curve). In other 

words, they noticed that to move from one iteration to the next, they had to subdivide each of the 

existing squares into fourths, and draw a “Z” within the new boxes that provided four new 

points. Using this idea, the students drew the third-order curve without even looking at binary 

expansions: they just continued working in decimal. This was an idea I wanted to highlight to the 

students, to show how they could look for patterns to simplify their problem-solving process. 

The final group, Cauchy’s Island, developed a method to conceptualize the binary digits 

using compass directions. They started with the case of two binary digits (four squares). If the 

first digit was a 0, it meant that they were on top half of the grid (north), and if it was a 1, it was 

the bottom half (south). The next digit indicated the left side (west) with a 0, and the right side 

(east) with a 1. The students generalized this to the second-order curve, by thinking of nested 

subdivisions. The first pair of binary digits was used to describe the largest subdivisions, the 

second pair described another layer of subdivisions, and so on (see Figure 3).  

<Insert Figure 3> 

 

To test their method, Cauchy’s Island attempted to locate the position of an arbitrary six-digit 

string of binary digits using this idea (see Figure 4). The first step was to draw the red line in the 

center of the grid. Using the two-digit compass directions, one of the four quadrants separated by 

red was selected (i.e. first choosing north/south and then east/west). The quadrants were split two 

more times, first in green, then in pencil, and the location of the six-digit binary string was 

located. Satisfied that this test worked, Cauchy’s Island worked through this process forward and 



backward: given a binary expansion, they could locate its position, and given a particular 

position, they could determine the corresponding expansion.  

<Insert Figure 4> 

 

In the synthesizing discussion (~15min) that followed student explorations (~45min), I 

sequenced student ideas as follows: (1) the Mathletes drawing the function without using binary 

expansions, (2) how the Angles performed their conversions in order, (3) the 1-2-3-4 patterns 

that Function Families noticed, and (4) the compass directions of Cauchy’s Island. To guide the 

discussion, I told groups in advance what they would be asked to share. I sequenced ideas in this 

order to start with initial explorations and finally move to a complete solution at the end, while 

still having each group share some of their productive ideas. 

I connected these ideas in the final discussion by highlighting different strategies that 

students used, looking at both areas of struggle and success. Having students share their 

strategies also moved away from simply looking at right and wrong, or who got the “best” 

answer. Instead, groups were able to share the issues they got stuck with (e.g., The Angles not 

choosing a systematic order for conversions) to highlight strategies that other groups might 

consider in the future. In addition, I shared another method for mapping binary strings to the 

square, which was conceptually distinct from the idea shared by Cauchy’s Island. The purpose of 

sharing this method was not to tell students that it was the “correct” answer, but to demonstrate 

that there were many ways of describing this mathematical situation. Because the students in this 

course were teaching lower-division math courses (either in K-12 schools or college), I 

connected the various approaches and false starts to developing more productive problem-

solving strategies. 



 

Reflection 

 Because this was the first time I had taught this task, it was difficult to anticipate how 

students would engage. Looking at student engagement showed a variety of false starts and dead-

ends in problem solving. It might be tempting to provide more guidance in a future iteration of 

the lesson to curtail this exploration time. However, I feel that it is important for students to 

explore in this way to develop as problem solvers, so I would not change that aspect of the 

lesson.  

 Still, there are possible modifications for the future. For me, the greatest surprise was the 

strategy used by Cauchy’s Island. This mathematically-valid strategy was distinct from what I 

had encountered in solving the problem myself and in reading other resources online. In teaching 

the lesson again, I could envision an extended version of the exploration that would have 

students find multiple different mappings and compare and contrast them. This would extend the 

lesson from one to two days. 

 Another connection that did not come out in this lesson was between the Cantor set and 

the Lebesgue curve. Even though prior lessons explored the ternary representation of the Cantor 

set, no students drew upon this prior knowledge, and I did not make it a focus of the discussion. 

Thus, I could envision another alternative version of this lesson in which I provided more 

discussion of ternary and the Cantor set (or even added new opening activities), and then had 

students think about mapping the Cantor set to the unit square. 

 

Cantor and Lebesgue Functions 

Launching the Task 



The second activity focused on Lebesgue function (also known as the Cantor function). For 

the purposes of the activity, students were introduced to two “different” functions that were 

called the Cantor and Lebesgue functions. The idea was that through exploration the students 

would come to see that these two functions were actually the same. The Lebesgue function was 

described as an iterative sequence (see Figure 5). The Cantor function was described as a 

mapping from [0,1] to [0,1] by the following set of directions: 

 

1. Express x in ternary (base 3). 

2. If x contains a 1, replace every digit after the first 1 by 0. 

3. Replace all 2s with 1s. 

4. Interpret the result as a binary number. The result is C(x). 

 

Students were provided with a link to an online base converter so that they would not need to 

perform conversions by hand. For this task, Mathletes and the Angles were assigned the Cantor 

function (the ternary expansion), while Function Families and Cauchy’s Island had the Lebesgue 

function (the sequence of functions). Students were not told that the sequence of Lebesgue 

functions would converge to the Cantor function, but the goal was that they would discover this 

during the plenary discussion. 

<Insert Figure 5> 

In addition to the definition of a function, students were provided with a set of questions: (1) 

What do they look like? (2) Are they bounded? (3) Are they continuous? (4) Are they 

differentiable? (5) Are they integrable? (6) What else can you discover? 

 



Using the Five Practices 

 This exploration took place after the previous one, so students already had experience 

with ternary expansions and the Cantor set. It was anticipated that students would quickly 

connect the Cantor set and Cantor function, but in monitoring the groups, it became clear that 

students did not make this connection. To recover from this poor anticipation, I had to explicitly 

prompt the students to think about the Cantor middle thirds set. In fact, it quickly became evident 

that this was a very difficult task for the students. I adjusted my plan and the class ended up 

spending two class periods on it rather than one as originally intended. The students spent the 

first class period (approximately 50 minutes) building the functions and building intuition about 

them and spent the next period answering the questions (1)-(6) above. Of the two functions, the 

Cantor function was much more difficult for students to build intuition about, because the 

iterative nature of the sequence of Lebesgue functions offered a lower barrier of task entry.  

 Early work with Cauchy’s Island showed that they needed support to understand the 

nested set of piecewise functions. Their approach was to write the third member of the sequence 

as a nine-part piecewise function, the fourth member as a 27-part piecewise function, and so on. 

This approach was quickly unmanageable, so I pressed them to think graphically instead. 

Similarly, the Mathletes were not sure how to approach the Cantor function. They used the 

converter to look at one binary string at a time, rather than thinking more holistically. 

Accordingly, I pressed them to think about the Cantor set and to think about how the function 

may differ when the input value was part of the Cantor set or not.  

 With guidance to look at numbers inside and outside of the Cantor set, the Mathletes 

were able to discover that each removed middle third would all map to the same y-value. They 

next discovered that each middle third would map to a y-value halfway the distance between the 



previously removed intervals (see Figure 6). Following this reasoning, they quickly concluded 

that the function must be continuous off of the Cantor set. With a bit of prompting about the 

definition of continuity, they discovered that the function must (surprisingly) be continuous 

everywhere, because the nature of the mapping off of the Cantor set afforded an argument to 

“bound the change” of the function on the Cantor set.  

<Insert Figure 6> 

 

 In contrast, Function Families was unable to systematically use base conversions to 

understand the Cantor function. I considered allowing the group to continue exploring the base 

conversions, but I was afraid that they would never reach the point of exploring function 

properties, which was my true goal for the lesson. Thus, I used this as an opportunity for students 

to share work across groups. I had “Team Cantor” and “Team Lebesgue” form as super groups to 

compare their work. As the groups met together, Function Families was able to generalize 

beyond their representation at specific points of the function so that they could begin to explore 

function properties when they returned to their own group. This instructional move was used so 

that Function Families could move beyond the base conversions and look at some other 

interesting function properties, such as continuity. 

 The Angles also had some difficulty discovering function properties. However, they did 

notice that the functions could not be differentiated at the endpoints of the “thirds” of the 

intervals, because there were corners there. This was sequenced early on in student presentations 

so that the group would have something positive to contribute.  

<Insert Figure 7> 



 Cauchy’s Island made some interesting observations about the differentiability of the 

function on the intervals. They first noted that the derivative would also be zero where the 

middle thirds were removed and that the other portions of the curve would become increasingly 

steeper (see Figure 7). Because the height of the function was reduced by 1/2 as it was 

compressed down for the next iteration, but the width was reduced by 1/3, the slope increased by 

3/2 at each iteration, eventually diverging to infinity.  

My goal for sequencing student work was to have students first present about the 

Lebesgue function, and then the Cantor function, so that hopefully students would see the 

sequence of functions converging to the final result. As such, student work was sequenced as 

followed: (1) the Angles and differentiation on the endpoints, (2) Cauchy’s Island observations 

about derivatives everywhere, (3) Function Families working with the inverse function, and (4) 

Mathletes’ observations about continuity. These results were connected so that students could 

hopefully see the relationship between the Cantor and Lebesgue functions. Indeed, as Cauchy’s 

Island was presenting their results on the Lebesgue function, Melvin exclaimed that they were 

converging to the Cantor function, and the whole class discussed this idea. This opened up space 

for the students to discuss what properties might be conserved through convergence of a 

sequence of functions, which led to future lessons on uniform convergence.  

Reflection 

The first observation I made early in the lesson was that this task was more appropriate 

for two class periods rather than one. In a second iteration of the lesson I would begin with one 

class period focused on constructing the functions and a second class period focused on function 

properties. I also did not anticipate that students did not have a systematic approach to exploring 

the Cantor function. In re-teaching the lesson, I would draw explicit connections to the Cantor 



set and help students be more systematic in their choice of points to map. On a positive note, I 

was pleased to see that students spontaneously connected the two different functions during the 

plenary discussion, without any additional prompting from me. 

 

Discussion 

 The five practices are tools an instructor can use to help set the course of a discussion 

before the discussion even begins. They support an instructor to highlight thinking from different 

students, connecting and building on what various students contribute. Moreover, by sequencing 

student responses appropriately, an instructor can help address status issues for students who 

may need more scaffolding to engage with the mathematics, so that they still have an opportunity 

to contribute their thinking to the discussion in a meaningful way [13]. 

 Developing inquiry-oriented lessons is a challenge. This process requires access to rich 

mathematical tasks, which are not always readily available, especially in higher-level 

mathematics courses. Moreover, the first time any lesson it is taught, it is difficult to anticipate 

what students may or may not do. Indeed, my initial anticipations in both of the above lessons 

needed to be modified. However, as an instructor uses similar tasks over time, or collaborates 

with colleagues, they can develop a catalog of student work samples to guide future teaching. As 

I described in my reflections, I already have a number of productive ideas for how to modify the 

lessons and my teaching next time around. The use of the five practices also provides insights 

into the types of tasks that work well. For instance, I found that iterative sequences of functions 

were productive areas of inquiry, because they were constructive and allowed for many 

opportunities for students to discover patterns.  



 The five practices can be supported with the use of other tools. For instance, carrying 

around a clipboard during class sessions to write down notes about students is one effective way 

to monitor, select, and sequence ideas. If these notes are kept over time, they can serve as a 

reference for the next time a lesson is taught. Indeed, such notes provided the basis for describing 

student work in this article. In addition, time invested in developing group norms improves the 

general productivity of students in a team environment. Ultimately, executing the five practices 

takes practice, but they can considerably improve the quality of classroom discourse. Because 

they help bring together the ideas of diverse students in a supportive and constructive way in 

classroom discussion, they have great potential for supporting student learning.  
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Figure 1. Student construction of first- and second-order Hilbert space-filling curves. 

 

 

Figure 2. Students constructing Fourier series on the sidewalk. 

  



Figure 3. Two iterations of the Z-order space-filling curve. 

 

Figure 4. Second-order space-filling curve with compass directions.  

 



 

Figure 5. Third-order space-filling curve with compass directions. 

 

 
Figure 6. Definition of the Lebesgue function.  

 

 
Figure 7. Student construction of the Cantor function. 

Exploration 11: Cantor and Lebesgue Functions

The Cantor function C(x) is defined as a mapping from [0, 1] ! [0, 1] as follows:

1. Express x in ternary (base 3).

2. If x contains a 1, replace every digit after the first 1 by 0.

3. Replace all 2s with 1s.

4. Interpret the result as a binary number. The result is C(x).

Hint: You may benefit from the following base converter: http://wims.unice.fr/wims/wims.cgi

The Lebesgue function L(x) is defined as the result of an iterative sequence {fn}n, as follows:

1. Let f0(x) = x.

2. For n � 0, let fn+1(x) =

8
><

>:

0.5fn(3x) 0  x < 1/3

0.5 1/3  x  2/3

0.5 + 0.5fn(3x� 2) 2/3 < x  1

What can you discover about these functions?

1. What do they look like?

2. Are they bounded?

3. Are they continuous?

4. Are they di↵erentiable?

5. Are they integrable?

6. What else can you discover?

1



 

 



Figure 8. Student construction of the sequence of Lebesgue functions. 
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