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This paper focuses on the question of what makes a good disciplinary or interdisciplinary 

problem. We draw from literature across the STEM disciplines and two conference sessions to 

provide insight into what makes a good problem within a specific discipline and across the 

disciplines. We use various frameworks to analyze a variety of problems that were nominated as 

exemplars by STEM education research experts. Common features identified include real-world 

connections, reinforcement of conceptual understanding, a low floor and high ceiling, multiple 

solutions paths, and building dispositions of professionals in the discipline. While a good 

problem need not have all of these features, in general, good problems have more of these 

features. We also recognize that these problems are context-specific, as what may be considered 

a problem for one learner could be a trivial exercise for another. We discuss some of the 

challenges of designing good interdisciplinary problems and identify some features that can 

make a problem interdisciplinary, including use of cross-cutting concepts and drawing on the 

specific expertise of each discipline. 

 

Introduction 

 STEM professionals are problem solvers. Engineers design solutions – bridges, airplanes, 

computers – that transform the way we live and work. Computer scientists develop applications 

that take our productivity to new levels. Physicists use fundamental laws to build models of 

increasingly complex real-world phenomena. Biologists develop new techniques for taming 



microscopic hazards that attack the human body. Chemists transform and analyze matter, from 

drug therapies to designer materials, to better our quality of life. All of these solutions arise from 

addressing basic problems of human existence, and these solutions transform our society. 

 Given the fundamental role of problem solving across the STEM disciplines, problem 

solving is a highly-valued practice in STEM education. But what types of problems should 

students solve? Which problems will help them develop the relevant skills that later allow them 

to solve problems like minimizing the effects of climate change, treatments for diseases, or 

engineering solutions? How do instructors support students to engage with such problems? 

 This paper addresses the question: what makes a problem good? Thinking beyond 

problems generally, what makes a problem good for biology, physics, math, engineering, 

computer science, or chemistry? What are the implications for interdisciplinary problems? In this 

paper, we discuss a variety of frameworks for thinking about good problems, both within and 

across disciplines. Drawing from two conference sessions focused on good problems, we analyze 

a variety of problems nominated by Discipline Based Education Research (DBER) scholars as 

exemplars. The authors of this paper span a variety of disciplines, so the individuals analyzing 

each of the problems given have expertise in that particular discipline. We close by discussing 

the challenges and opportunities for interdisciplinary problems. 

 

Theoretical Background 

What makes a problem? 

 We take the view that problem solving is relative. In this way, what constitutes a problem 

is a relationship between a problem solver and the task itself, not an inherent property of the task 

(Schoenfeld, 1985). Thus, a problem is something that is difficult for someone who is engaging 



with it. A good problem is typically more than just a technical or computational challenge, but 

something that poses an impasse in conceptualizing or implementing a solution. We recognize 

that some great unsolved problems in the STEM disciplines are also computational challenges, 

like image recognition, but this is different from a computational challenge such as multiplying 

two four-digit numbers mentally. In other words, if someone has a readily available solution 

schema, that they could in principle implement, it is an exercise, not a problem (Schoenfeld, 

1985). Further, problems can be conceptualized as seeds to disciplinary thinking (Schoenfeld, 

1991). This means that problems serve as a platform for students to engage in the practices of a 

discipline. For our own work, we focus on tasks that are likely to serve as problems for students 

in our courses, recognizing that they would not be problems in this sense for disciplinary experts. 

 

How do problems support learning? 

 Educators have developed a variety of metaphors for learning. Two prominent models are 

learning as knowledge acquisition and learning by apprenticeship (Sfard, 1998). From the 

knowledge acquisition perspective, we can think of learning in the STEM disciplines as a 

process of developing more normative conceptions of scientific (and mathematical) phenomena 

(Linn, Clark, & Slotta, 2003; Smith, diSessa, & Roschelle, 1993). From the apprenticeship 

perspective, learning is about being able to “do” the same things that STEM professionals do, in 

increasingly sophisticated ways (Lave, 1996). Taken together, we can think about learning as a 

process of changing what it means to “know and do” within the STEM disciplines (Lampert, 

2003). 

 Across the STEM disciplines, scholars have paid great attention to features of problems 

that can support learning. We consider these as the pedagogical aspects of good problems. Our 



goal here is not to provide an exhaustive list of such features. Indeed, a recent dissertation 

focused on good problems analyzed a number of problems along over 20 dimensions, or 

mathematical problem features (Quarfoot, 2015). Aggregating these dimensions across 

disciplines, the list soon becomes intractable. Rather, we provide a brief look at some of these 

literatures simply to make the case that problems are good both because of what they help 

students learn, and how they help them learn it (i.e., the pedagogical features). 

 In mathematics, Schoenfeld (1991) describes a problem aesthetic, favoring problems that 

have some or all of the following four features: (a) accessibility, (b) multiple solution paths, (c) 

insight into mathematical concepts or practices, and (d) generalizability (to promote future 

exploration). Principles (a) and (d) are often described as having a “low floor and high ceiling,” 

meaning that a problem is easy for any student to start, but allows for a great deal of challenge 

and exploration. The emphasis on multiple solution paths is pervasive in mathematics education 

(e.g., National Council of Teachers of Mathematics, 2000), because it allows students to compare 

and contrast their solutions to develop deeper knowledge. Taken together, these problem features 

are valuable because they support learning across a variety of students in heterogeneous 

environments (Cohen & Lotan, 1997), which is a real pedagogical challenge. 

 In computer science, the notion of “nifty” problems adds some other aspects of good 

problems (Layman, Williams, & Slaten, 2007). Such problems also meet four criteria, they are: 

(a) playful, fun, or interesting; (b) topical (fitting into standard curricula); (c) scalable (i.e. with a 

low floor and high ceiling); and (d) easily adoptable (by other instructors). This work emphasizes 

that good problems should be enjoyable for students, having some sort of fun factor that 

motivates students to want to work on the problem. Also, fitting in with standard curricula and 

having materials (e.g., handouts, source code) that can be easily used by others means that they 



are problems that can have utility to instructors in a variety of situations. Like the problem 

aesthetic described above, much of this niftiness is that the problems are designed in a way that 

they can work well for a variety of students in a variety of situations. 

 In physics, several novel problem formats have been developed: context-rich problems 

(Heller & Hollabaugh, 1992), ranking tasks (O’Kuma, Maloney, & Hieggelke, 1999), jeopardy 

problems (Van Heuvelen & Maloney, 1999), and more. As an example, context-rich problems 

are designed so that the problem is situated in a real-world context, often with extraneous or 

missing information, and with some level of solver choice in defining the aim of the problem, 

selecting an appropriate physical model of a situation, and evaluating the results (Heller, Keith, 

& Anderson, 1992). The real-world context can serve as a low floor because students may have 

experience with the setting, while also providing a high ceiling when simplifying approximations 

to the problem are replaced with more real-world practicalities. In addition, the context supports 

the disposition of professionals to apply physical thinking outside the classroom. Emphasis on 

development of physical models, estimation, and approximation supports problem solving 

practices used by professional physicists and allows for multiple solution paths. Context-rich 

problems and other common formats of physics problems attempt to include pedagogical 

incentives for expert-like problem solving practices, with varying success. While professional 

physicists classify problems in terms of the relevant underlying physics principles, novices are 

more likely to focus on surface features of a problem (Chi, Feltovich, & Glaser, 1981; Docktor, 

Mestre, & Ross, 2012). To move the students towards move expert-like practices, problems have 

been structured to emphasize the key physics practices of blending conceptual and mathematical 

reasoning (Leonard, Dufresne, & Mestre, 1996; Hull, Kuo, Gupta, & Elby, 2013) and employing 

multiple representations (Kohl, Rosegrant, & Finkelstein, 2007). While context-rich problems 



provide many useful pedagogical opportunities for students, we also acknowledge that there are 

times when creating a fantasy or theoretical situation can also be beneficial, because it allows an 

instructor to emphasize particular concepts without the messiness of a real-world situation. 

 

Does it matter how we use problems? 

 As emphasized above, it is helpful when problems can be used by a variety of instructors 

and students, in a variety of settings. In other words, problems do not exist in a vacuum. They 

serve as a starting point for learning, whether that takes place in the classroom, at home, in a lab, 

or out in the field. However, there is the whole process of teaching and learning that must take 

place, which can either enhance or inhibit the value of a task. 

 The first question is how many people should work on a given task. One way that this has 

been conceptualized is the notion of a “group worthy problem” (Cohen & Lotan, 1997; 

Featherstone et al., 2011; Heller, Keith, & Anderson, 1992). Simply put, any given task is 

appropriate for a certain number of people. Assigning a one-person task (e.g., procedural 

computations) to a group results in disengagement, because it is not group worthy. Similarly, 

assigning a task made for a team to a single person will result in frustration. So, when thinking 

about whether a problem is good or not, it is also a matter of thinking about how many people it 

is good for. 

 Another issue relates to how an instructor uses a task. In other words, what sort of 

scaffolding does the instructor provide? In mathematics, this issue has been conceptualized in 

terms of the math tasks framework with the idea of cognitive demand (Henningsen & Stein, 

1997). When using a task in the classroom, there is the task as given, the task as framed by the 

instructor, and the task as implemented by students. These “tasks” may differ, because a teacher 



can provide scaffolding (e.g., support towards completing the task) or extensions (e.g., asking 

new and harder questions) during the enactment of a task. These techniques modify the cognitive 

demand of the task, influencing what students learn. It is common for instructors to over-scaffold 

tasks, which may remove their learning potential by only leaving the trivial aspects of the task 

for the students to complete. So, even if a task is good to begin with, it might be trivialized in 

implementation. Similarly, skilled teachers can take relatively mundane tasks and transform 

them into something worthwhile.  

Related to the idea of cognitive demand is Bloom’s Taxonomy of Cognitive Domains 

(Bloom et al., 1956), which has been taken up extensively by biology educators. Bloom’s 

taxonomy organizes the type of thinking required by a task into six levels. These six levels can 

be further grouped as lower-order cognitive skills (knowledge, comprehension) and higher-order 

cognitive skills (application, analysis, synthesis, evaluation) (Crowe et al., 2008). Just as with 

cognitive demand, the way a teacher enacts a task can be used to engage higher-order skills, 

which would help make something into a “good problem.” That said, recent inventory of end-of-

chapter problems from popular General Chemistry textbooks noted a serious lack of problems in 

the higher cognitive categories, a situation that could very well limit both instructor and student 

access to examples of more meaningful learning opportunities (Dávila & Talanqer, 2010).  

Another issue at hand in problem solving is working memory. As previously stated, 

“expert” problem solvers in a discipline are much better able to pay attention to the relevant 

features of a problem, while ignoring other aspects that are more peripheral (Chi, Feltovich, & 

Glaser). This relates to working memory, insofar that better problem solvers are able to better 

utilize their working memory by paying attention to the relevant features at hand (Passolunghi & 

Siegel, 2001). In contrast, less effective problem solvers may become bogged down because they 



are trying to attend to too many things at once. Through practice problem solving, students can 

better develop these metacognitive skills, and thus become better at problem solving as a practice 

(e.g., Schoenfeld, 1985). 

 Finally, one might consider the way that an exploration around a problem is sequenced. 

In science education, the Knowledge Integration (KI) framework describes a process for 

developing conceptual understanding (Linn et al., 2003). KI involves a four-step process: (1) 

elicit ideas, (2) add new ideas, (3) develop criteria, and (4) sort out ideas (Slotta & Linn, 2009). 

The developers of KI then embed this sequence into a variety of different project types (e.g., 

investigation, controversy, critique, design). If a particular part of the sequence is removed from 

how one engages with a task, less learning results (Slotta & Linn, 2009). This emphasizes that 

the curriculum surrounding a problem matters, and can either set up a problem for success or 

failure.   

 

Are the STEM disciplines all the same? 

 Up to this point, one might simply think that good problems are good for any discipline. 

Indeed, certain pedagogical features are relatively standard across disciplines. For instance, it is 

hard to imagine a discipline in which good pedagogical practice would mean making problems 

too difficult for most of the students, or trivializing them to the point where there is nothing left 

for students to do. At the same time, we acknowledge that the STEM disciplines are actually 

quite diverse, and simply referring to them simultaneously in a single acronym obscures this 

diversity. One of our goals with this paper is to highlight such diversity. We begin to do so by 

highlighting that the major problem types in disciplines are quite different, owing to the 

disciplines themselves.  



In the biosciences, the use of case studies is a powerful tool for learning (Allchin, 2013). 

Such problems are particularly valuable because they provide students with an opportunity to use 

evidence to make predictions about authentic problems that highlight complexity of living 

organisms and their environments. Chemistry education often focuses on coordinating 

macroscopic, submicroscopic, and symbolic representations of chemical phenomena (Talanquer, 

2011). This coordination models the reasoning patterns of experts, who tend to think about 

chemistry using the three domains simultaneously. In the geosciences, spatial navigation and 

mapping are key practices for field work (Riggs, Lieder, & Balliet, 2009). In physics, there is a 

huge emphasis on building simplified models from which theoretical generalizations can be 

made (Hestenes, 1987; Brewe, 2008). Computer science centers on developing programs, so 

debugging and programming are key parts of the problem-solving process (Layman et al., 2007). 

In engineering, building solutions to real-world problems is the goal, so there is a focus on 

designing, prototyping, testing, and refining (Ikonen, Piironen, Saurén, & Lankinen, 2009). 

Finally, (pure) mathematics revolves around conjecturing, argumentation, and proof; it is 

deductive rather than empirical (Harel & Sowder, 2007). A summary of these problem types is 

given in Table 1. 

 

Table 1. Canonical problem types by discipline. 

Discipline Problem Type Values / Implications 

Biosciences Case Studies Reasoning from evidence 

Chemistry Representation Coordinating macro, submicro, and symbolic  



Geosciences Spatial Navigation Guiding field work 

Physics Model Building Articulation of physical laws 

Computer Science Programming/Debugging Creating tools 

Engineering Design Challenges Real-world solutions 

(Pure) Mathematics Proof/Argumentation Theory building 

 

This is not to say that each discipline has only one core practice or type of problem. 

Rather, we argue that certain problem types are emblematic of certain disciplines and rarely used 

in others. This is due to fundamental differences in the nature of the disciplines and their valued 

practices. For instance, while it is possible to have mathematical proofs that speak to the science 

disciplines, it is rare for a proof to afford opportunities to develop disciplinary knowledge in 

science disciplines, because they are empirical while pure mathematics is not. This means that 

developing good problems across the disciplines has an extra level of challenge involved. 

 

What is disciplinary learning? 

 Now that we have considered some of the nuances of problems across STEM disciplines, 

we introduce a framework for thinking about learning in the disciplines. This gives us another 

way to think about which problems are good – they are the ones that result in more learning. 

Within the STEM disciplines, there are a variety of guiding documents that set out standards for 

what students should know and be able to do. Here we draw on two frameworks from the 

National Research Council: Adding it Up in mathematics (National Research Council, 2001), and 

the Science Education Framework for science and engineering disciplines (National Research 



Council, 2011). Taken together, we can draw out a few key areas of focus across all STEM 

disciplines. 

 The Science Education Framework has three major areas of focus for student 

understanding: disciplinary practices, crosscutting concepts, and core disciplinary ideas 

(National Research Council, 2011). Practices are things such as developing and using models, 

analyzing and interpreting data, or explaining and justifying one’s ideas, that are key to doing the 

work of STEM professionals. Crosscutting concepts are big conceptual ideas like patterns, 

systems, and conservation, that are relevant to many disciplines such as physics, biology, and 

chemistry. Finally, core disciplinary ideas are concepts such as forces (physics), evolution 

(biology), and the particulate nature of matter (chemistry), that are critical to understanding 

particular disciplines. In biology, these concepts and practices are clearly described by the 3D-

LAP (Laverty, et al., 2016) and Vision and Change (AAAS, 2011), which makes biology 

exemplary in this regard of describing the desired disciplinary knowledge at the undergraduate 

level. In chemistry, the discipline’s “anchoring concepts” (as they are operationalized in an 

undergraduate curriculum) are articulated in the American Chemical Society Examinations 

Institute’s Anchoring Concepts Content Maps (ACCM) (Murphy, et al., 2012; Holme, et al., 

2015), which have been established by the Chemistry community at large, with input from 

participants of several workshop and focus group sessions. Other disciplines have varying 

specificity in documents describing the core ideas of the discipline, but this is mostly at the K-12 

level. 

 Drawing from Adding it Up, there is a conceptualization of mathematical proficiency as 

having five strands: conceptual understanding, procedural fluency, strategic competence, 

adaptive reasoning, and productive dispositions (National Research Council, 2001). Conceptual 



understanding relates to math concepts, operations, and relations. Procedural fluency is the 

ability to carry out procedures with flexibility, efficiency, and accuracy. Procedures are things 

like performing integration by parts, balancing a chemical equation, or constructing a Fourier 

series. Strategic competence relates to solving mathematical problems and adaptive reasoning 

relates to interpreting and explaining mathematical ideas. Finally, productive dispositions relate 

to how one sees and identifies with the discipline. Ideas like “steady effort in learning 

mathematics pays off ,” “deep thinking, not speed is valued,” or “math is useful in the real 

world” would be considered productive dispositions. 

 Taking these two frameworks together, we offer four main categories: concepts, 

practices, procedures, and dispositions. We condense crosscutting concepts and core disciplinary 

ideas together in the category of concepts, recognizing that some of these may be specific to a 

discipline while others are cross-disciplinary. We also condense strategic competence and 

adaptive reasoning together in the category of practices, seeing as these are both core 

disciplinary practices in mathematics. Of the four areas, we de-emphasize procedures compared 

to the others. Procedures are not unuseful, but in most typical curricula, they receive far more 

attention than the other three categories. Thus, part of the work of good problems is to counteract 

this narrowing of the curriculum. 

 From the perspective of our framework, a problem can be considered “good” when it 

helps students learn along these four dimensions. The pedagogical and other features described 

above all make it easier for a student to engage meaningfully with a problem, but there must also 

be something meaningful to learn from the problem, which these dimensions describe. A good 

disciplinary problem supports growth along these dimensions with respect to that particular 

discipline (e.g., a good physics problem would help students develop the practices and 



dispositions of a physicist). A good multidisciplinary problem (Choi & Pak, 2006) does this for 

multiple disciplines (e.g., the practices and concepts of both mathematics and physics). One can 

also think of interdisciplinary problems (ones that build concepts in multiple disciplines and help 

integrate them) or transdisciplinary problems (those that also include a humanities context). For 

this paper we focus on disciplinary and interdisciplinary problems.  

 According to these classifications, it is possible to have a physics problem that includes 

mathematics, which is a good physics problem but not a good mathematics problem. In this 

sense, it could be a good disciplinary problem, and a multidisciplinary problem, but not a good 

multidisciplinary problem because it does not help build core ideas or practices in multiple 

disciplines. 

Method 

 This paper builds on conversations from two interdisciplinary STEM education 

conferences: Breaking the Boundaries in STEM Education, hosted on April 7 at Loyola 

Marymount University; and Transforming Research in Undergraduate STEM Education 

(TRUSE), hosted from July 5-9, 2017, at the University of St. Thomas. There were 

approximately 20 participants throughout the day in the Breaking Boundaries problem solving 

strand, and approximately 40 in a follow-up breakout session on disciplinary problems at 

TRUSE. We acknowledge the conversations in these sessions as the inspiration for this paper. 

The participants in these sessions were Discipline-Based Education Researcher (DBER) scholars 

who spanned the disciplines of mathematics, physics, chemistry, and biology, with minimal 

representation of geology, computer science, and engineering.  

 During the TRUSE session, participants were first split up at different tables, by 

discipline, so that they could brainstorm features of good problems and exemplary problems 



within their disciplines. We draw from these problems in our analyses below. Afterwards, 

participants were split up into cross-disciplinary tables, and tasked to generate good 

interdisciplinary problems. We also offer some of these problems below with commentary on 

why this was a very difficult task.  

 

Good Disciplinary Problems 

Mathematics: Filling Bottles 

The first problem was a mathematics problem that was suggested by the presenters (see 

Figure 1). This problem focuses on core ideas in calculus, notably function and rate of change. 

This problem also has core practices of representation (e.g., generating graphs from some 

realistic situations). As it relates to everyday life, the problem can promote productive 

dispositions that math is supposed to make sense and that functions do not necessarily need to be 

defined by a single algebraic formula. The problem de-emphasizes procedures, but there are 

some procedural aspects of labeling axes and putting together graphs.  

 

Figure 1. Filling bottles. 



 

 

This task is a nice example of a problem with a low floor and a high ceiling. For the first 

part of the task students can readily reason that in each case a graph of height versus time would 

be increasing and hence everyone can make some progress. Issues of concavity, average rate of 

change, and instantaneous rate of change, and the connection between the graph of a function 

and a graph of its rate of change can also emerge for students, making the ceiling quite high. In 

particular, the second bottle shape change point in the ink bottle offers an opportunity for 

students to informally and intuitively reason about instantaneous rate of change, even if this 

concept has not formally been defined in their calculus class. For example, Marrongelle and 

Rasmussen (2008) describe how offering alternatives for the shape of the graph at the point 

where the second bottle transition from spherical to cylindrical (see Figure 2) can be generative 

for eliciting justifications that foreground instantaneous rate of change. 

 
Figure 2. Which graph most accurately reflects what happens at the neck of the bottle? 



 

 

 

 

 

 

 

The problem also has multiple solution pathways. For example, we have seen some 

students approach this problem by imagining a cup of water being poured in the bottle, marking 

on the image of the bottle how high they conjecture that the water rose, adding another cup of 

water and marking again on the bottle how high the water rose, etc. This cup by cup process 

would then be graphically re-represented and students can justify why it would make sense to 

connect the points with either straight line or non-straight line segments. Graphs of height versus 

time can also be generated by dynamically imaging how fast the water is rising as water flows 

into the flask at a constant rate. This type of reasoning is emblematic of what Carlson et al 

(2002) refer to as covariational reasoning, which is a foundational disciplinary way of 

conceptualizing how two quantities simultaneously change. While this task does not lead to 

formal deductive proofs, it does lend itself to conjectures, argumentation, and justification - key 

disciplinary practices in proving.  

 

Physics: Superman: The Ride 

The second problem is a context-rich physics problem written by one of the authors, who 

was actively involved in the Breaking Boundaries sessions. The problem statement is in Figure 3. 

neck 

C 

A 

B 

volume 

height 



As with many context-rich problems, this problem requires students to identify a calculable 

target variable that can be used to answer a non-quantitative question via comparison. The 

problem could be framed with a more explicit and more scaffolded question, such as “Assuming 

the brakes do not fail, is the safety track long enough?” However, we prefer this more open-

ended question because it gives students valuable practice in identifying and justifying their 

assumptions and in determining which variables are calculable and relevant. As this problem is 

solved by groups in class, the instructor can reframe the question as necessary if students 

oversimplify the problem or have trouble identifying a calculable approach. 

This question can be answered by calculating the distance that the car needs to stop under 

the influence of friction and comparing to the length of the safety track or calculating the speed 

after travelling the length of the safety track. Multiple solutions paths are available; this problem 

can be effectively solved using forces and kinematics, conservation and the work-kinetic energy 

theorem, or the impulse-momentum theorem. The instructor can have students explore the 

alternate solution paths as extensions to the problem. Each solution path requires a different 

physical model of the situation. Logically complete solutions require the students to articulate 

and justify approximations as part of their model, such as assuming negligible air resistance. 

 

Figure 3. Superman: The Ride 

I once rode Superman: The Ride at Magic Mountain. The ride accelerates a car through a 

launching station, then the track turns vertically upward. The car rises up the track to a height 

of 415 ft, then falls back down under the influence of gravity and stops again back at the 

starting point. The braking mechanism at the end of the ride malfunctioned so the car 

continued through the launching station onto a safety track where it was stopped by friction. I 



estimate that the coefficient of friction was 0.5. I can see that the safety track is 750 feet long. 

The ride specs say that the car weighs 6 tons. I also noticed that the brakes did partially 

engage. The ride attendant apologized for the malfunction and offered to let us ride again 

without waiting in line. Should I get off? 

 

The physics concepts used in this problem vary by choice of solution path. Regardless of 

the path, the solution requires employing at least two fundamental physics concepts (e.g. energy 

and forces, forces and kinematics, or energy and momentum). Any solution is likely to include at 

least two representations: a sketch of the ride and a motion diagram, free body diagram, or 

energy bar chart. Physics practices supported by this problem include defining a good question, 

identifying an appropriate physics principle, and application of physical laws. Once a physics 

principle has been chosen and translated into an equation using the appropriate physical law, the 

calculational procedures are simple algebra. Dispositions of physics experts encouraged by this 

problem include examining everyday situations for underlying physics, seeing physics as 

relevant to everyday life, modelling by making simplifying assumptions and approximations, and 

interpreting the conceptual meaning of calculated results. 

 

Chemistry: Structure-Property Relationships 

The third problem was suggested by a group of chemists; versions of this problem are 

well-known and published as exemplars (Laverty, et al., 2016). The problem stem presents two 

substances that possess the same molecular formula (dimethyl ether and ethanol, C2H6O) along 

with representations of their molecular structures (i.e. Lewis structures, Figure 4). The problem 

consisted of six prompts related to these two substances: (1) what intermolecular forces (IMFs) 



would be present in a container of dimethyl ether? (2) what IMFs would be present in a container 

of ethanol? (3) draw a collection of dimethyl ether molecules, showing the strongest IMF for this 

compound, labeling the location and type of IMF you are drawing; (4) draw a collection of 

ethanol molecules showing the strongest IMF for this compound, labeling the location and type 

of IMF you are drawing; (5) using the relative strengths of IMFs, predict which compound would 

have the higher boiling point and explain why; and (6) suggest a way in which a mixture of 

ethanol and diethyl ether could be separated and use your previous responses to support your 

suggestion. 

  

Figure 4. Data for structure-properties relationship problem. 

  

The chemists identified a number of reasons why this represents a “good problem.” First, 

the problem centers on two core chemistry disciplinary ideas: (1) chemical compounds have 

geometric structures that influence their chemical and physical behaviors; and (2) intermolecular 

forces (electrostatic forces between molecules) dictate the physical behavior of matter. While 

chemistry’s core ideas are articulated in a variety of ways, language from the ACCM was used 

here. Alignment with articulated disciplinary core ideas was considered a hallmark of “good 

problems” by the chemists because such organization mirrors how experts think about and 

reason within their own disciplines (National Research Council, 2000). Moreover, this problem 

is aligned with well-documented difficulties that students have when attempting to connect 



macroscopic properties to representations of molecular-level structure (Cooper et al., 2012). 

Thus, if implemented properly, this problem could aid students in overcoming a common 

struggle encountered when working with one of chemistry’s core ideas. 

  Second, this problem requires students to engage in practices central to science in general 

and to chemistry specifically. Integral to Coppola’s appeal to “Do Real Work, Not Homework” 

is the perception that students are only learning about science if they do not engage in the 

practices that are central to doing science (Coppola, 2015). The result of the former is, of course, 

the many shortcomings experienced by those who engage in rote versus meaningful learning 

(Mayer, 2002). Eight scientific and engineering practices were articulated in A Framework for K-

12 Science Education (National Research Council, 2011) and there is little reason to believe that 

these practices should not be applied to the college classroom (Cooper, et al., 2015). An analysis 

of the “good problem” above using the Three-Dimensional Learning Assessment Protocol (3D-

LAP, Laverty, et al., 2016) demonstrates that it is well-aligned to the scientific practices of 

Developing and Using Models—students are asked to construct models of the strongest IMFs 

present in samples of dimethyl ether and ethanol, make a prediction about a phenomenon 

(boiling points) using these models, and provide reasoning that links the model to the prediction. 

Moreover, this problem is aligned with a disciplinary practice articulated in Sevian and 

Talaquer’s Chemical Thinking Learning Progression: analysis, the development and application 

of strategies for detecting, separating, and quantifying chemical substances (Enke, 2001; Sevian 

and Talaquer, 2014).  

Lastly, this “good problem” is well-aligned (or has the potential to be, given how it is 

implemented in the classroom) with attributes of the aforementioned “Real Work” framework 

(Coppola, 2015). The problem balances convergent and divergent tasks; it demands that students 



construct responses that (a) can be identified as “right” or “wrong” (e.g. prompts 1, 2, and 5) and 

(b) that are more generative in nature, whose accuracy is defined within a set of common 

guidelines (e.g. prompts 3, 4, and 6). Absent from the problem articulation is how it is to be 

operationalized in a real learning environment; such choices could further align the “good 

problem” with the ideals of Real Work. For example, the problem could incorporate peer 

presentations, review, and critique so as to allow learners to develop explanatory knowledge; 

additionally, the problem could incorporate technology to permit learners to develop models 

using multiple modes.  

 

Biology: The ‘Dino Problem’ 

Variations of the ‘Dino Problem’ (Bray Speth et al., 2009; Grant 2008, cartoon adapted 

from Frank Hauser, Jr., published in Science, vol. 250, pp. 1103, 1990) have been used in 

biology education long before the TRUSE conference, but this problem was identified as a 

“good” by some of the biology education researchers that attended the conference. While this 

cartoon appears to be deceptively simple, it can actually pose real challenges for undergraduate 

biology students.  

 

Figure 5. The Dino Problem 



  

  

We consider the ‘Dino Problem’ to be a “good problem” for a number of reasons. First, 

this problem asks students to reason about evolution by natural selection, a core biology concept 

as recognized by reports from the NRC (2011) and AAAS (2011). A good response from a 

student needs to be quite complex and make use of all the principles that govern evolution by 

means of natural selection (i.e. variation within a population, genetic basis of that variation, trait 

inheritance, differential survival and reproductive success, and changes in phenotype frequency 

over time). To generate an exemplary response, students have to 1) recall the multiple principles 

that govern natural selection, 2) apply these principles to this hypothetical scenario, and 3) 

integrate the changes occurring in both of these populations by connecting with those governing 

principles. Even after instruction, biology students struggle to successfully incorporate all of the 

necessary principles when presented with this assessment.  

Second, this problem explicitly asks students to generate a reason for why change came 

about, and therefore, students are primed to present their explanation in terms of cause and effect 

(a crosscutting concept). Also, this problem asks students to reason about two different 

populations (animals and plants) over time. By presenting these organisms in tandem (both 

pictorially and textually), students are encouraged to consider the interactions occurring between 



the organisms. So, we would argue that the ‘Dino Problem’ supports at least two crosscutting 

concepts from the NRC framework and the resulting 3D-LAP: a) cause and effect and b) systems 

and system models. 

Third, this problem asks students to make inferences on the hypothetical evolutionary 

scenario depicted in the cartoon. Students are expected to generate an explanation for 

populations’ change over time using their understanding of evolution by natural selection (Bray 

Speth et al., 2009). Because this question is situated in a hypothetical scenario, students would 

not be able to simply recall knowledge they have previously learned. Instead, students would 

need to apply the principles of natural selection in this new scenario, connecting those principles 

with the inferences they make from the figure to construct an accurate explanation of the 

evolutionary event, a task that is known to be very difficult for students. As a result, we would 

classify this as a higher-order cognitive question along Bloom’s taxonomy (Crowe et al., 2008) 

that supports the scientific practices of a) developing and using models and b) constructing 

explanations that have been identified by the NRC (2011) and the resulting 3D-LAP (Laverty, et 

al., 2016). 

 

Good Interdisciplinary Problems 

When participants in the TRUSE session were placed into interdisciplinary tables, they 

had a much harder time coming up with “good” interdisciplinary problems. Some groups were 

more successful than others (see below), but the fact that groups consisting of experts of multiple 

STEM fields had difficulty generating problems highlights the challenge of generating good, 

truly interdisciplinary problems. 



Although participants struggled to generate many problems, the process itself elucidated 

some salient features of good interdisciplinary problems. Good interdisciplinary problems must 

have a contextual intersection that is interesting and relevant to multiple disciplines. A problem 

with a very narrow, discipline-specific context does not easily allow for the integration of 

multiple disciplines. For example, having students from biology and chemistry balance a 

chemical equation gives them practice of an important procedure used in both fields, but it does 

not allow for the biology students to bring in their domain-specific knowledge to add to the 

solution. Oftentimes instructors (and textbook authors) try to rectify this issue by making the 

surface features of the problem relate to a second discipline, while the deep feature remains 

discipline-specific—asking students to balance a chemical equation related to glycolysis does not 

automatically make it a biology problem as well. 

  However, a rich context is not a sufficient condition for a good interdisciplinary problem. 

Good problems should generate knowledge in multiple disciplines. One way to do this is through 

the application of a crosscutting concept. Every scientific discipline is unique, but many of them 

use the same tools and concepts to tackle problems, such as energy (Watkins et al., 2012) and 

conservation laws, which can be applied in a large range of situations. A bonus consequence of 

the universality of these crosscutting concepts is that members of each discipline think about, 

focus on, and invoke different aspects of the underlying concept when solving problems. This 

leads to a more creative and dynamic problem-solving process as students from different 

disciplines can unlock different parts of the problem, which then uncover new entry points for 

the other disciplines to add to a possible solution. 

The application of crosscutting concepts emphasizes the interconnectedness of the 

various disciplines and helps fight the compartmentalization of concepts by discipline. Science is 



not done in a vacuum; big, important scientific problems facing humanity like curing cancer or 

minimizing the effects of climate change require creative solutions and the cooperation of many 

scientists from different disciplines. Group solving of good interdisciplinary problems mimics 

how science is done “in real life.” This is a way to promote dispositions that are valued across 

multiple disciplines. It provides students—who will eventually be the ones working on these big, 

important scientific problems—an opportunity for them to act as proto-practitioners in a 

classroom setting. Here are two examples of possible interdisciplinary problems created during 

the TRUSE session. 

  

Climate Modeling.  

Keeping in mind that a good interdisciplinary problem should have broad contextual 

relevance, one group suggested climate modeling as a candidate for a suite of problems but did 

not agree upon a specific problem statement (again highlighting the difficulty of writing 

problems like this). Such a large and complex topic allows for the integration of many different 

STEM disciplines, but can quickly become overwhelming if the focus is not narrowed enough 

that the beginning, or at least a toehold, of a solution can be seen. One such question could be 

“What effect would a 10% decrease in the amount of carbon dioxide in the Earth’s atmosphere 

have on the oceans and their ecosystem?” Geologists, environmental scientists, and biologists 

would bring their knowledge of the climate and Earth as a system to the solution. This base 

knowledge would provide a starting point for the group to rally around, and others could build on 

it in various ways. Testing possible models would necessitate some level of computational 

modeling and, thus, writing computer code, in which mathematicians, computational physicists, 

and computer scientists all have expertise. An understanding of the chemistry of the oceans and 



the atmosphere and the effect temperature has on relevant reactions and chemical equilibria, such 

as acidification of the oceans due to increased dissolved carbon dioxide, is crucial for an accurate 

and complete model of the planet’s climate. A broad topic like climate modeling requires input 

from practitioners of many different STEM fields, each of whom would bring valuable 

discipline-specific practices and core ideas necessary to completely understand the problem at 

hand. 

   

Fat Problem.  

This problem is simply stated as: “If you were to lose five pounds of fat, where does it 

go?” The most obvious applications of this problem relate to biology and chemistry:  What is 

fat? What is its chemical structure? How and why is fat created in the body? How and why is fat 

broken down in the body? How is the broken-down fat expelled from the body?  Biologists 

might take a big-picture, system-level view of the problem by looking at the various metabolic 

processes, while chemists might focus on the products and energetics of the specific reactions 

involved. 

  Although this problem is clearly relevant to biology and chemistry, members of other 

disciplines can provide valuable insight into its solution. Applied mathematicians and physicists, 

who generally value modeling and theory building, can provide a simple model from which 

generalization can be made. They could also work on various scaling arguments to see how the 

size of the organism affects the conversion process itself, as well as the relative amounts of 

product and heat generated. For example, how might the solution found initially for a human 

change for a mouse? A cat? An elephant? A blue whale? 



  In addition to a rich and relevant context, this problem requires the use of crosscutting 

concepts like energy and conservation of mass. A chemist would be interested in the 

thermodynamics and energetics of the individual chemical reactions, reactants, and products. A 

biologist might take a broader view of these reactions and focus on the energetic coupling of one 

reaction to another, say, or how the release of energy due to a specific reaction affects the 

organism as a whole. Conservation laws require the defining of a system, which changes 

depending upon what is being solved for. Mass must be conserved in a given chemical reaction, 

which is shown by a balanced chemical equation; an organism, on the other hand, can “lose 

weight” due to interactions and transfers between it and the surroundings. 

  This problem is also an example of a “low floor, high ceiling” problem. The problem is 

simple on its face—“Where does the fat go?”—and is very approachable for scientists and non-

scientists, alike. This initial simplicity belies a possibly complex and intricate solution that can 

be extended to further applications or other related problems. For example, students could 

propose and then perform experiments to test the predictions generated during the problem-

solving process. They could burn a sample of fat in an enclosed space and measure the amount of 

carbon dioxide produced or any resulting temperature changes. This then leads to another good 

interdisciplinary problem relevant to many disciplines—the interpretation of actual scientific 

data with respect to a system of interest. 

 

Discussion 

This paper tackles the problem of what makes a good problem. STEM DBER scholars 

across their disciplines have spent a considerable amount of time thinking about problems, but 

there is certainly no consensus across the disciplines. Nevertheless, scholars have developed a 



variety of different, yet complementary, frameworks that can be used to think across the 

disciplines. For instance, mathematics educators use the idea of cognitive demand to describe 

what type of thinking a task requires, whereas biologists have taken up Bloom’s taxonomy. Here 

we benefit from the interdisciplinarity of the authors, as it provides us access to literatures and 

concepts that we otherwise would not be familiar with. 

Although we took different lenses to the problems above, we note common features 

including real-world connections, reinforcement of conceptual understanding, multiple solutions 

paths, a low floor and high ceiling, and building dispositions of professionals in the discipline. 

We propose that good problems in any STEM discipline will include at least some of these 

features, though any individual problem need not contain all of these features. While these are 

similar features, they are also discipline-specific. Each discipline favors certain concepts, 

dispositions, and real-world connections (e.g., engineering design vs. theory-building). Indeed, 

as we reflect on our collaborative work through these sessions, we recognize that for an 

individual who does not have disciplinary expertise, it may be very difficult to tell whether or not 

a problem is good. 

We also reflect on the extent to which students across the disciplines actually have the 

opportunity to engage in good problems. In physics, for example, despite wide consensus among 

physics education faculty on the benefits of the features of good problems, many instructors 

persist in assigning problems that are not well aligned with their learning goals (Yerushalmi, 

Cohen, Heller, Heller, & Henderson, 2010). Textbook analyses in mathematics also points to the 

impoverished nature of tasks for instructors to choose from. For example, Lithner (2004) found 

that in a mainstream calculus textbook, 90% of the tasks could be solved by superficial reasoning 

(e.g., relying on recall, keywords, pattern matching to worked out examples). Thus even if an 



instructor wanted to assign good problems, either for homework or for collaborative work in 

class, finding or developing such problems can be a challenge.  

Finally, creating interdisciplinary problems was a challenge for members of our sessions. 

Because a good deal of disciplinary knowledge is required to engage with many problems, 

interdisciplinary problems require deep understanding of multiple disciplines. This is difficult to 

achieve unless one is teaching in a truly interdisciplinary environment. Another possibility that 

we see is using different problem types across disciplines. For instance, programming is 

ubiquitous in computer science, but it could also be used in physics, integrating the two subjects 

better. Similarly, mathematical biology is a new area that has emerged in mathematics. While it 

is challenging, we remain optimistic for possibilities of truly interdisciplinary problems.  
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