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Abstract 
 

Introductory college calculus students in the United States engaged in an activity called Peer-
Assisted Reflection (PAR). The core PAR activities required students to: attempt a problem, 
reflect on their work, conference with a peer, and revise and submit a final solution. Research 
was conducted within the design research paradigm, with PAR developed in a pilot study, tried 
fully in a Phase I intervention, and refined for a Phase II intervention. The department’s uniform 
grading policy highlighted dramatic improvements in student performance due to PAR. In Phase 
II, the department-wide percentage of students (except for the experimental section) who 
received As, Bs, and Cs in calculus 1, compared to Ds, Fs, and Ws (withdrawal with a W but no 
grade on a transcript), was 56%. In the experimental section, 79% of students received As, Bs, 
and Cs, a full 23% increase. Such increased success has rarely been achieved (the Emerging 
Scholars Program is a notable program that has done so.) 
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Peer-Assisted Reflection: A Design-Based Intervention for Improving Success in Calculus 
 
1. Introduction 
 
 This paper documents the use of reflection tools to improve student success in calculus. 
Since the calculus reform movement (Ganter, 2001), calculus learning has been a major research 
focus in the United States (US), with over 2/3 of departments reporting at least modest reform 
efforts (Schoenfeld, 1995). Despite some successes, introductory college calculus remains an 
area of persistent difficulty. In the US, each fall semester, over 80,000 students (27%) fail to 
successfully complete the course (Bressoud, Carlson, Mesa, & Rasmussen, 2013). 
 Calculus concepts, such as functions (Oehrtman, Carlson, & Thompson, 2008) and limits 
(Tall, 1992), are notoriously difficult for students. These conceptual difficulties are exacerbated 
by the challenges of the high school to college transition (e.g., developing greater independence, 
learning new study habits, forming new relationships; cf. Parker, Summerfeldt, Hogan, & 
Majeski, 2004). Moreover, many students enter college unprepared; only 26% of 12th grade 
students achieve a level of proficient or better on the National Assessment of Educational 
Progress (NAEP) exam (NCES, 2010). Through K12 instruction, students often develop learning 
dispositions that do not align well with the requirements of collegiate mathematics (Schoenfeld, 
1988). All of these factors impede student success in calculus. 
 To help students succeed in calculus, I engaged in three semesters of study using the 
design-based research paradigm (Cobb, Confrey, Disessa, Lehrer, & Schauble, 2003). Design-
based research aims to make practical and theoretical contributions in real classroom settings 
(Brown, 1992; Burkhardt & Schoenfeld, 2003; Gutiérrez & Penuel, 2014). By specifying the 
theoretical underpinnings of my design in detail, I developed a practical instructional tool and 
refined principles of why it works (Barab & Squire, 2004). Over three semesters of design, I 
developed a collaborative activity called Peer-Assisted Reflection (PAR). PAR was developed in 
a pilot study, tried fully in a Phase I intervention, and refined for a Phase II intervention.  
 The core PAR activities required students to: (1) work on meaningful problems, (2) 
reflect on their own work, (3) analyze a peer's work and exchange feedback, and finally (4) 
revise their work based on insights gained throughout this cycle. PAR was based on theoretical 
principles of explanation (Lombrozo, 2006) and assessment for learning (Black, Harrison, & 
Lee, 2003). In particular, PAR leverages the connection between peer-analysis and self-reflection 
(D. R. Sadler, 1989) to help students develop deeper mathematical understandings (Reinholz, in 
press). 
 During Phase I and Phase II of the study, I used quasi-experimental methods to study the 
impact of PAR on student outcomes in calculus. The study took place in a mathematics 
department with many parallel sections of the same course, all of which used common exams 
and grading procedures. This paper focuses primarily on student understanding as measured by 
exam performance. Two companion pieces (Reinholz, forthcoming a, b) provide in-depth 
analyses of student explanations and the evolution of the PAR design. 
 This paper is organized into three major components. The first component describes the 
PAR intervention, including its theoretical basis, core activities, and a brief history of its 
evolution. The next component focuses on the impact of PAR on student performance during 
Phase I and Phase II of the study. Finally, I further elaborate the intervention by discussing the 
impact of students’ revisions and the mechanisms that appeared to make PAR such an effective 
intervention. 
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1.1. Background 

 
1.1.1. Efforts to Improve Calculus Learning 
 To date, two of the most notable efforts to improve calculus learning in the US were the 
calculus reform movement (Ganter, 2001) and Emerging Scholars Program (ESP; Fullilove & 
Treisman, 1990). Internationally, calculus continues to be an area of interest, as evidenced by the 
recent ZDM special issue focused on calculus research (Rasmussen, Marrongelle, & Borba, 
2014). As these researchers note, a number of advances have been made (e.g., in understanding 
how students learn specific concepts), but “these advances have not had a widespread impact in 
the actual teaching of and learning of calculus” (Rasmussen et al., 2014, p. 512). Accordingly, I 
focus primarily on the ESP and calculus reform movement, both of which have had notable 
impacts on the teaching and learning of calculus.  

The ESP is based on Treisman’s observational study of minority learners (Fullilove & 
Treisman, 1990); the ESP seeks to reproduce the learning conditions of successful students from 
the original study. Students in the ESP attend special two-hour problem sessions, twice a week, 
in addition to their traditional calculus section. In the sessions, groups of 5-7 students work 
collaboratively on exceptionally difficult sets of problems; both the quality of the problems and 
the collaborative environment are essential (Treisman, 1992). The ESP is open to students of all 
races, but enrolls primarily minority students; African American students have increased their 
success rates by 36% through their participation (Fullilove & Treisman, 1990). Versions of the 
ESP at other institutions (e.g., the University of Texas at Austin, the City College of New York) 
have also improved outcomes for minority students (Treisman, 1992). Although ESP-style 
learning has been difficult to implement in regular calculus sections, the ESP provides evidence 
of the impact of meaningful problems in a supportive, collaborative learning environment. 

Calculus reform interventions often introduced technology and/or collaborative group 
work to help students solve real-world problems. These studies generally reported positive 
improvements in engagement and deeper understanding, with mixed performance on traditional 
exams (Ganter, 2001); however, it is difficult to generalize from these studies, due to lack of 
common measures (e.g., many of them did not compare student passage rates directly). To 
contextualize the present study, I report on some notable efforts. The Calculus Consortium at 
Harvard impacted a number of universities, with one of the most notable outcomes the gain of 
12% improvement in passage rates documented at the University of Illinois at Chicago (Baxter, 
Majumdar, & Smith, 1998). Nevertheless, this finding is limited, because students were not 
compared using the same exams. Smaller positive gains were noted in the Calculus, Concepts, 
Computers, and Cooperative Learning (C4L) program, which showed a 4% improvement in 
course GPA scores (Schwingendorf, McCabe, & Kuhn, 2000). Other notable efforts, such as 
Calculus and Mathematica (Roddick, 2001) and Project CALC (Bookman & Friedman, 1999) 
did not directly compare student outcomes in calculus I, but comparisons of the GPAs of 
traditional and reform students in subsequent courses showed mixed results. As a whole these 
studies show promise, but in many cases the outcomes were difficult to interpret due to the 
methodological difficulties of conducting such studies. I attempt to account for some of these 
issues in the present study by comparing students using a common set of exams.  

 
1.1.2. Explanation and Understanding 



PEER-ASSISTED REFLECTION  4 
	
  

 Although mathematical understanding has been defined in a number of ways, there is 
general consistency between recent attempts to create useful definitions (NGAC 2010; NCTM, 
2000; Niss, 2003; NRC, 2001). These standards and policy documents tend to focus on learning 
as both a process of acquiring knowledge and as the ability to engage competently in social, 
disciplinary practices (Sfard, 1998). The standards focus on holistic learning, and as a result, 
focus on a large number of skills and practices. This is an important shift for improving 
mathematical teaching, learning, and research, but it also highlights the difficulty of measuring 
learning in a meaningful way. 
 Explanation is a highly-valued mathematical practice, and is considered a “hallmark” of 
deep understanding in the common core state standards (NGAC 2010). This aligns well with the 
five NCTM process standards, of which explanation is fundamental to three  (reasoning and 
proof, communication, and connections) and important to the other two (problem solving and 
representation; NCTM, 2000). Explanation is also prevalent in the Danish KOM standards (e.g., 
in reasoning and communication; Niss, 2003).  
 Explanation also supports learning, because it helps individuals uncover gaps in their 
existing knowledge and connect new and prior knowledge (Chi, De Leeuw, Chiu, & LaVancher, 
1994). In this way, explanation provides students with opportunities to grapple with difficult 
mathematical concepts in a supportive environment, so that they can learn to overcome 
conceptual difficulties rather than avoid them (Tall, 1992).  
 Focusing on student practices, explanation supports productive disciplinary engagement 
(Engle & Conant, 2002). This framework provides a lens for understanding the types of activities 
students engaged in through PAR. Engle and Conant (2002) describe four principles for 
productive disciplinary engagement: (1) problematizing, (2) authority, (3) accountability, and (4) 
resources. As a whole, these principles require that students work on authentic problems and are 
given space to address the problems as individuals, but are held accountable to their peers and 
the norms of the discipline. PAR was designed to support such engagements, because it provides 
students with opportunities to explain and justify their ideas on rich mathematical tasks, and 
receive and incorporate feedback from their peers. 
 
1.1.3. Using Assessment for Learning 

The PAR intervention was designed using principles of assessment for learning to 
support student understanding. Recognizing students as partners in assessment (Andrade, 2010), 
such activities focus on how students can evoke information about learning and use it to modify 
the activities in which they are engaged (Black et al., 2003). Generally speaking, assessment for 
learning improves understanding (e.g., Black et al., 2003; Black & Wiliam, 1998). In the present 
study, students analyzed their peers’ work to develop analytic skills that they could later use to 
reflect on their own work (Black et al., 2003).  

Through reflection, an individual processes their experiences to better inform and guide 
future actions (Boud, Keogh, & Walker, 1996; Kolb, 1984). In the context of PAR, these 
experiences focused on problem-solving processes, such as metacognitive control, explanation, 
and justification. I use the terms analysis and reflection, rather than assessment, to distinguish 
PAR from other activities focused on assigning grades, which contain little information to 
support such learning processes (Hattie & Timperley, 2007). 

To self-reflect, a learner must: (a) possess a concept of the goal to be achieved (in this 
case, a high-quality explanation), (b) be able to compare actual performance to this goal, and (c) 
act to close the gap between (a) and (b) (D. R. Sadler, 1989). Through actual practice analyzing 



PEER-ASSISTED REFLECTION  5 
	
  

examples of various quality, students can develop a sense of the desired standard and a lens to 
view their own work. This allows students to reflect on and improve their mathematical work 
(Reinholz, in press). 

Many researchers have studied students analyzing the work of their peers (Falchikov & 
Goldfinch, 2000), but they focus primarily on peer writing (e.g., Min, 2006). Most of these 
studies have focused on calibration between peer and instructor grades, rather than peer analysis 
as a tool for learning (Stefani, 1998). Even studies focused on learning rarely measured 
quantitative changes in student outcomes (P. M. Sadler & Good, 2006). The present study is 
unique because it focuses on the impact of peer analysis on student outcomes in a domain where 
such activities are rare.  

In this article I define PAR as a specific activity structure, but in theory, PAR could be 
implemented in other ways. PAR involves students analyzing one another's work and 
conferencing about their analyses. Through peer-conferencing, students explain both their own 
work and the work of their peers, which promotes understanding. 
  
1.1.4. Research Questions 
 In alignment with prior work, this paper addresses three research questions: 
 

• Did PAR improve student exam scores and passage rates in introductory calculus? 
• How did PAR impact student performance on problems that require explanation 

compared to those that do not? 
• In what ways did PAR appear to support student learning? 

 
The first research question focuses on whether or not PAR can help address the persistent 
problem of low student success in calculus. Although PAR targets student explanations 
specifically, I was interested in whether or not PAR could improve student performance more 
broadly (research question two). I address these two questions through quantitative analyses of 
student performance during Phase I and Phase II of the study. To understand the ways that PAR 
appeared to support learning, I analyzed how students revised their work and also conducted 
interviews with students.  
 
1.2. Core PAR Activities 
 Students were assigned one additional problem (the “PAR problem”) as a part of their 
weekly homework (for a total of 14 problems throughout the semester). The core PAR activities 
required students to: (1) complete the PAR problem outside of class, (2) self-reflect, (3) trade 
their initial work with a peer and exchange peer-feedback during class, and (4) revise their 
work outside of class to create a final solution. Students turned in written work for (1)-(4), 
but only final solutions were graded for correctness. During their Tuesday class session, 
students were exposed to each other’s work for the first time (unless they worked together 
outside of class). Each student analyzed their partner’s work silently for five minutes before 
discussing the problem together for five more minutes, to ensure that students focused on 
one another's reasoning and not just the problems themselves. This meant that students spent 
a total of approximately 10 minutes of class time each week dedicated to PAR; this was a 
relatively small amount of the 200 minutes of class time that students met each week. Most 
of the time students spent working on PAR took place outside of class. 
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 Through PAR, students practiced explanation; gave, received, and utilized feedback; 
and practiced analyzing others’ work. PAR feedback was timely (before an assignment was 
due; cf. Shute, 2008) and the activity structure (submission of both initial and final 
solutions) supported the closure of the feedback cycle (D. R. Sadler, 1989). Through 
repeated practice analyzing others’ work, students were intended to transition from external 
feedback to self-monitoring (see appendices A and B for the self-reflection and feedback 
forms). To support students to meaningfully engage in PAR conferences, students practiced 
analyzing hypothetical work during class sessions and discussed it as a class. 
 PAR problems were inspired and modified from: the Shell Centre, the Mathematics 
Workshop Problem Database (a database of problems used in the ESP), Calculus Problems 
for a New Century, and existing homework problems from the course. I further narrowed the 
problem sets by drawing on Complex Instruction, a set of equity-oriented practices for K-12 
group work (Featherstone et al., 2011), and Schoenfeld’s (1991) problem aesthetic. Ideal 
problems: were accessible, had multiple solution paths to promote making connections, and 
provided opportunities for further exploration. Most problems required explanation and/or the 
generation of examples; as a result, each pair of students was likely to have different solutions. 
Thus, these tasks could be considered real mathematical problems, not just exercises (related to 
problematizing; cf. Engle & Conant, 2002).   
 I illustrate PAR by discussing a student interaction around PAR10 (the 10th assigned 
problem). PAR10 required students to trace their hand, use simple shapes to estimate the 
enclosed area, and estimate an error bound (see Figure 1). This interaction was chosen 
because it illustrates how peer discussions were able to support meaningful revisions.  
 
Figure 1 
PAR10: Hand Area 
In this problem, you will trace the shape of your hand and approximate the area of the 
picture that you create. Your main tasks are to devise a method for approximating the 
area and to show that your approximation is very close to the actual area. 

1. Put your hand flat on the grid provided (with fingers touching, no gaps) and trace 
the shape of the outline of your hand. Make sure that the shape you trace is a 
function (if not, erase the parts of the shape that would make it not a function). 

2. Devise a method to approximate the area of the region inside the curve you have traced. 
Explain your method in detail, and explain why it should work.  (Don’t perform 
any calculations yet.) 

3. Use the method you described above to approximate the area of the outline of 
your hand. (Show your work.) 

4. Describe a method for estimating the error in your method of approximation. (Error 
is something you would like to make small! Thus an estimate for the error means 
being able to say the error is less than some value.) 

5. Calculate an estimate for the error for your method. 
6. Explain (in principle) how you could improve your method to make your estimate 

as accurate as one could want (i.e., minimize the error). (You do not actually have 
to perform the calculations, just explain what you would do.) 
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Figure 2 
Peter’s Initial Solution to PAR10 Part 4. 

 
To begin, Peter and Lance completed PAR10 as homework. Figure 2 shows Peter’s 

work to estimate the error of his method. Peter illustrated his hand and labeled 28 unit 
squares that were all entirely inside of the hand. Peter’s method to calculate error was to 
“make rough estimates” of how much area he left out, which he reasoned “should be within 
5% of the actual value.” However, Peter had no bound on the accuracy of his “rough 
estimates,” so he may have actually provided an underestimate, rather than an upper bound 
of error. A portion of Peter’s self-reflection is given in Figure 3. Targeted checkboxes 
helped students focus on specific areas of communication.  
 
Figure 3 
Peter’s Self-Reflection 

 
 
 In class, Peter traded his work with Lance and they spent five minutes silently 
reading and providing feedback. Lance’s feedback (see Figure 4) told Peter to calibrate his 
units of measurement to a known unit, but Peter ignored this advice (see Figure 5).  
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Figure 4 
Feedback Received by Peter 

 
 
Figure 5 
Peter’s Final Illustration of His Hand Area 

 
 

After exchanging written feedback, the students discussed the problem. Peter had 
focused on estimating the error from the inside, while Lance focused on estimating from 
the outside, but both solutions were incomplete. These different perspectives connected 
productively in the PAR conversation. 
 

[12] Lance: Were you trying to…get an under?  
[13] Peter: Yeah, initially. 
[14] Lance:  What I was thinking was you could make an over-approximation.  Take 

this right here and create an over-approximation and then subtract what you 
got from here with your under-approximation and it should get you this space. 

[15] Peter: So it’s showing it has to be between those two values. That’s the error.  
[16] Lance:  Right, that actual value is going to be between your low approximation 

and your high approximation.  
... 
[23] Peter: It says you want to think about bounding your error with some larger 

value. So that would make sense then. 
 
Lance asked Peter if he was trying to get an under approximation (line 12), and then stated 
that he was trying to get an over approximation (line 14). Peter and Lance realized that 
combining these ideas together, they could get bounds on the actual value from above and 
below (lines 15 and 16). Peter used this idea to come up with a correct method for 
bounding the error (see Figure 6).  
 In Peter’s final solution, he calculated an over approximation and an under 
approximation, and reasoned that the actual value must be between the two. Peter used the 
boxes from his initial solution that were entirely inside the hand as an underestimate. He 
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then added additional boxes that surrounded the outside of his hand and reasoned that 
“since this will be an over approximation, I know that the true area under the curve will be 
less than the area I calculate by error.” While not all PAR conversations resulted in 
productive revisions, this example illustrates the PAR process. PAR was designed to 
provide students with the authority to grapple with rich problems while holding students 
accountable to their peers through conferencing, key components of productive 
disciplinary engagement (Engle & Conant, 2002). 
 
Figure 6 
Peter’s Final Solution to PAR10 Part 4 

 
 
1.3. Development of the Intervention 
 Although literature supported using peer-analysis to promote self-reflection, it did not 
specify instruction in detail. Thus, PAR was developed over the three semesters of study. An in-
depth analysis of the evolution of the PAR design is reported on in a companion piece (Reinholz, 
forthcoming b). For the present paper, I highlight three crucial areas of development: (1) the use 
of real student work, (2) randomization of partners, and (3) student training.  
 
1.3.1. Use of Real Student Work 
 The basic PAR activity structure was developed in a pilot study in a community college 
algebra classroom (during spring 2012). The class consisted of 50% females and 79% 
traditionally underrepresented minorities (of 14 students after dropouts) who were 
simultaneously enrolled in a remedial English class. Experienced educational designers and 
community college instructors advised me to have students analyze hypothetical work to mitigate 
possible issues from students having their work analyzed by peers. However, even by mid-
semester, students struggled to analyze hypothetical work. For instance, on the 6th homework 
assignment students were asked to rank order and analyze four sample explanations. Not a single 
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student provided a clear rationale for their ordering. Some students also remarked that they did 
not understand the purpose of these activities. 
 To address these difficulties, I instead had students analyze each other’s work and 
provide verbal and written feedback. Contrary to initial concerns, students seemed comfortable 
and engaged with the activity. Students now received immediate feedback from their peers as to 
whether or not their explanations were understood. As one student, Teresa, described:  
 
 “I didn't get it before, why you were always asking us to explain, but now it makes sense. 
 When you don't explain things people can't tell what you're doing.” 
 
 Students were now able to discuss their analyses, and the activity was more meaningful, 
because students could see themselves as helping a peer. Because students had to present to a 
peer, they were held accountable for the quality of their work by peers in addition to the 
instructor (Engle & Conant, 2002). Finally, students received feedback that they could use to 
revise their own work (providing additional opportunities or “resources” for improvement). For 
all of these reasons, the revised activity structure was adopted as the basis for PAR. The PAR 
procedures for how and when students would engage in this process were solidified at the 
beginning of Phase I (as described in section 1.2). 
 
1.3.2. Randomization of Partners 
 During Phase I, a small subset of students had short, superficial peer conferences. 
Consider Nicki and Alex’s discussion of PAR10. Nicki had a mostly correct solution while 
Alex had only solved half of the problem. In the transcript below, both students spoke 
sarcastically, as though they were not using PAR as a serious learning opportunity: 
 

[2] Nicki: I think you did it right, except for the last 3 parts. (in a sing-song voice)  
[3] Alex: Yeah, totally! (sarcastically)  
[4] Nicki: Do you know how to do it, just using triangles?  
[5] Alex: Yeah, I got that. 
[6] Nicki: You gotta add the ones underneath, and subtract the other ones.  
[7] Alex: Yep. 
[8] Nicki: It looks pretty good, and then for more accuracy, you could do some 

more triangles. 
[9] Alex: Even more triangles. (sarcastically)  
[10] Nicki: And more triangles. (sarcastically) 
[11] Alex: I said yours is awesome, and, yeah.  

 
In contrast to most student conversations (e.g., Peter and Lance’s conference above), Nicki 
did not discuss the concepts at all. She simply told Alex what to revise (lines 6, 8, and 10).  
Alex provided no feedback, which was atypical. Alex revised his solution, but apparently 
did so without understanding, because he still answered the question incorrectly.  
 These superficial conversations took place between a small subset of students who 
worked with the same partners repeatedly. These students appeared to be working with their 
friends in the class, and usually did not provide useful feedback, or simply provided answers 
to one another. This issue was addressed in Phase II by having students sit in a random seat 
on PAR day; I did not observe such conversations during Phase II. Having students sit in a 
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random seat as they entered the classroom also meant that little to no time was required for 
students to find partners.  
 
1.3.3. Training of Students 
 Students practiced analyzing sample work through a weekly training activity. Each 
activity was written to correspond to that week’s PAR problem. Students were typically 
given 2-3 minutes to think about three samples of students work, and then spent about 3-5 
minutes discussing the work as a class. This is time that other sections would typically 
spend on lecture. I provide an example in which students began the class session by silently 
analyzing the work given in Figure 7.  
 
Figure 7 
Sample Solutions for the PAR10 Training Activity 
Instructions: Classify the “bullseye” (correct explanation), “on the board” (a mostly correct 
idea that is communicated poorly or has a minor error), and “off the mark” (incorrect) 
solutions. 
 
Prompt: Explain (in principle) how you could improve your method to make your estimate 
as accurate as one could want (i.e., minimize the error).  
 
Sample 1: If I took a limit as the width of the rectangles approaches 0 (making the number 
of rectangles approach ∞), the difference in the area under the curve and the rectangles would 
approach 0.  
 
Sample 2: You could use midpoints rather than endpoints and it will be more accurate 
because there will be less overlap. 
 
Sample 3: If I had more rectangles there would be less overlap and the approximation 
would be better. 
 
After students analyzed the work silently, they had a whole class discussion about their 
analyses. In what follows, students describe some of their observations about what is 
problematic about the second sample solution given above (see lines 4, 10, and 14).  
 

[3] Instructor: What about number 2? 
(Three students shake their heads no, Patrick, Colton, and Barry) 
[4] Patrick: In the lab we just did, we created that graph to show that midpoints 

aren’t always more accurate.  
[5] Instructor: So midpoints aren’t always the best. What else? 
[6] Sue: Is this just general, or about the PAR?  
[7] Instructor: These are always about the PAR 
[8] Sue: Wouldn’t midpoints be better? 
[9] Instructor: What do you think, would midpoints be better? 
[10] Barry: Would it even matter, because it says “as accurate as you would want,” 

and you can only get so accurate with midpoints? 
[11] Instructor: What do you guys think about that? Did you not hear him, or do you 



PEER-ASSISTED REFLECTION  12 
	
  

disagree? 
[12] Jim: I couldn’t hear him. 
[13] Instructor: Could you shout it from a mountain Barry? 
[14] Barry: Yeah, so I just said that the prompt asks how you could improve the 

method to make your estimate as accurate as you would want, but using 
midpoints you can only make it so accurate, which is a problem. 

  
After the instructor asked students what they thought about the explanation (line 3), 

a number of students shook their heads, indicating they thought it had problems. In line 4, 
Patrick connected the calculator lab that the class had been working on to the existing 
prompt, noting that midpoints don’t necessarily create the most accurate estimate. Sue was 
unsure about this, so she asked to clarify (line 8). Rather than answering himself, the 
instructor allowed the class to respond (giving them authority in the discussion). Barry 
gave an explanation for why the midpoint method is insufficient to produce arbitrary 
accuracy (lines 10 and 14). As this brief transcript highlights, students had opportunities to 
analyze various explanations and explain their reasoning (developing authority; cf. Engle 
& Conant, 2002). This gave students opportunities to calibrate their own observations to 
the perspectives of their peers and instructor. I now analyze the impact of the intervention. 
 
2. Phase I (Fall 2012) 
 
2.1. Materials and Methods 
  
 Phase I took place in a university-level introductory calculus course in the US 
targeted at students majoring in engineering and the physical sciences.1 The course met four 
days a week for 50 minutes at a time. Ten parallel sections of the course were taught using a 
common syllabus, curriculum, textbook, exams, grading procedures, calculator labs, and a 
common pool of homework problems (instructors chose which problems to assign). Many of the 
PAR problems were drawn from this pool, but some were used only in the experimental section.  
 The calculus course was carefully coordinated, with all instructors meeting on a weekly 
basis to ensure alignment in how the curriculum was taught. Historically, the course had been 
taught using primarily a lecture-based format, which I confirmed through observations of three 
of the comparison sections. Instructors generally dedicated the same number of days to the same 
sections within the book and covered similar examples. The experimental section also used a 
lecture format, with some opportunities for student presentations and group work. The primary 
difference between the experimental and comparison sections was the use of PAR, as described 
in section 1.2. Students had some opportunities to analyze hypothetical work to develop analytic 
skills, but during Phase I the systematic training procedure had not yet been implemented; 
students only engaged in three training activities during the entire semester. 
   
2.1.1. Participants  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  All research reported in this manuscript was conducted in accordance with the ethical standards 
in the Helsinki Declaration of 1975, as revised in 2000, as well as national law, with approval of 
the appropriate Institutional Review Board.	
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 Most sections of the course had 30-40 students, with a few large sections of 50-90 
students (see Table 1). Students enrolled in the course as they normally would, with no 
knowledge that there was an experimental section. On the first day of class, students in the 
experimental section were given an opportunity to switch sections, but none did. The study 
classifies as quasi-experimental, because students were not randomly assigned to sections. 
While there may be systematic differences in the students who enrolled in different sections, 
I have no data to suggest that any particular section was atypical. As I describe later, the 
analysis of Exam 1 scores (as a proxy for a pre-test) indicates that the sections were indeed 
comparable. Moreover, demographics were collected during Phase II, and there were no 
significant differences between sections. 

Michelle, who had a PhD in mathematics education and nearly ten years of teaching 
experience, taught the experimental section and one of the comparison sections. Michelle 
taught two sections to help control for the impact of teacher effects. Of the two sections 
Michelle taught, I had her use PAR in the larger section, to garner evidence that PAR could 
be used in a variety of instructional contexts (not just small classes). Michelle used 
identical homework assignments and classroom activities in both sections, except for PAR 
(students in both sections completed the PAR problems, but the comparison students did 
not conference about their work).  

Comparison instructors were chosen who had considerable prior teaching 
experience. Heather, a full-time instructor with over a decade of teaching experience, 
taught another observed comparison section. Logan, an advanced PhD student, taught the 
final observed comparison section. All observed instructors had taught the course a number 
of times before. Teachers in the comparison sections taught the course as they normally 
would.  

 
Table 1 
Phase I Data Collection Table 
 Experimental Comp. 1 Comp. 2 Comp. 3 Comp. (Other) Total 
Instructor Michelle Michelle Heather Logan - - 
Students 56 18 38 67 230 409 
Participants 53 17 29 54 - 163 
Video Obs. 45 6 6 6 - 63 
Interviews 14 - - - - 14 
PAR Conv. 66 - - - - 66 

 
2.1.2. Data Collection  

To document changes in student understanding, I collected exam scores and final 
course grades for students in all sections of the course; all students took common exams, 
which allowed me to compare the experimental section to the department average scores. 
To study student interactions, I video recorded class sessions of the experimental section 
and three comparison sections. I performed all video observations with two stationary 
video cameras: one for the teacher, one for the class. As a researcher, I attended all class 
sessions, taking field notes of student behaviors and class discussions. In the experimental 
section, I also scanned students’ PAR assignments and made audio records of students' 
conversations during peer-conferences. After the second midterm, I conducted semi-
structured interviews with students in the experimental section about their experiences with 
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PAR. A summary of the data collected is given in Table 1 (enrollment numbers are for 
students who remained in the course after the W-drop date, which was approximately 
halfway through the semester). Any students who enrolled but did not take the first exam 
were removed from all analyses; taking the first exam was used as an indicator of a serious 
attempt at the course. 
 
2.1.3. Exam Design and Logistics.  
 A five-member team wrote all exams. After three rounds of revisions, the course 
coordinator compiled the final version of the exam. Exams were based on elaborated study 
guides (3-4 pages); students were given the study guides 2-3 weeks in advance and only 
problems that fell under the scope of the study guides were included on exams. This 
ensured that exams were unbiased towards particular sections.  
 Exams were designed to follow a standard template: one page of procedural 
computations, one page of true/false questions, and the rest of the exam was conceptual 
problem solving. Depending on the specific topics covered on the exam, other idiosyncratic 
problem types were included, such as curve sketching. This typology of problem types is 
described in Table 2.  
 
Table 2 
Exam Problem Types 
Problem Type Description 

Problem Solving Non-rote mathematical problems. Over 80% had multiple 
parts and required written explanations.  

True/False Students must explain why it is true, or provide a 
counterexample and explain why it is false.  

Pure Computation Procedural practice of limits, derivatives, and integrals.  

Miscellaneous Multiple choice, fill-in-the-blank, and curve sketching.  
 Midterms had nine, mostly multi-part questions on average, and the final exam was 
slightly longer. Table 3 shows the breakdown of problems by type for the Phase I exams, 
which shows that the exams had a similar breakdown of problems. 
 
Table 3 
Percentage of Points by Problem Type (Phase I) 
Type Exam 1 Exam 2 Exam 3 Final Exam 

Problem Solving 50% 50% 47%   53% 

True/False 20% 15% 15%   20% 

Pure Computation 25% 19% 19%   27% 

Miscellaneous 15%      16% 19%   - 

Total Points Possible 99     104 104 150 
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Exams were administered in the evenings, each covering 3-4 weeks of material, 
except for the comprehensive final exam. Grading was blind, with each problem delegated 
to a single team of 2-3 graders, to ensure objectivity. Each team of graders designed their 
own grading rubrics, with approval from the course coordinator. These rubrics followed 
standard department procedures for many types of problems, such as true/false or 
procedural computations. Students needed to show their work and explain their reasoning 
to receive full credit on any problem other than pure computations of limits, derivatives, 
and integrals, and multiple-choice questions (in contrast, true/false questions did require 
explanations). Partial credit was offered on all problems.  

 
2.1.4. Exam Content  
 According to a US national study of calculus programs, “the vast majority of exam 
items (85.21%) could be solved by simply retrieving rote knowledge from memory, or 
recalling and applying a procedure, requiring no understanding of an idea or why a procedure is 
valid” (Tallman, Carlson, Bressoud, & Pearson, forthcoming). In contrast to typical exams, the 
exams used in the present study emphasized explanation and deeper problem solving. Two 
typical problems are given in Figures 8 and 9. 
 
Figure 8.  
Sample Problem Solving Problem 
A rectangle is inscribed with its base on the x-axis and its upper corners on the parabola 
f(x) = 3P – x2 (where P > 3). Complete the following parts of the question to find the 
dimensions of such a rectangle with the greatest possible area. 
a) Draw a diagram of the situation, labeling the variable dimensions of the rectangle. 
b) Write an equation for a function A that expresses the area of the rectangle in terms of the 
variable(s) defined in (a). What is the domain of this function? 
c) Find the dimensions of the inscribed rectangle that will maximize its area. 
d) Explain how you know that the value you found in (c) is the maximum area. 
e) Describe what happens to the shape of the inscribed rectangle as P increases. (Relate 
your answer to how both the length and the width of the rectangle depend on P.) 
 
Figure 8 is a typical problem-solving problem. Prompts (a)-(c) were a nontrivial calculus 
problem (maximization with the use of a parameter), and the final two prompts (d) and (e) 
required students to explain and justify their work. Figure 9 provides two sample prompts 
from a true/false problem. On average, each exam included four such prompts.  
 
Figure 9. 
Sample True/False Problem 
Indicate whether each of the following statements is True or False. If the statement is true, 
explain how you know it is true. If it is false, give a counterexample. (A counterexample is 
an example that shows the statement is false.) 

a) If 𝑓 𝑥 𝑑𝑥 = 4!
! , then 𝑓 𝑥 𝑑𝑥 = 2

!
!
!  

c) If f’(x) > 0 for x < -3 and f’(x) < 0 for x > -3, there must be a local maximum at x=-3. 
 

For true/false questions, students were required to provide an explanation justifying 
their answer. Even if they gave a counterexample to show the statement was false, they 
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needed to provide a written justification of their counterexample to receive full credit. 
Problem solving and true/false problems (shown above) all required written explanations, 
and comprised about two-thirds of each exam (see Table 3). The only problems from 
exams in the present study that would accurately be classified as procedural recall are the 
“Pure Computation” problems, which comprised less than 30% of any given exam. 
Although miscellaneous questions did not require explanations, none of them could be 
solved through simple recall. 
 
2.2. Results 
 Success in the course was defined as receiving an A, B, or C (the grade requirement 
for math-intensive majors like engineering), compared to receiving a D, F, or W (withdrawal 
with a W on the transcript, which is not calculated into one’s GPA). I computed success 
rates using student course grades, 70% of which was based on exam scores and 30% on 
homework and calculator lab scores. The course coordinator scaled homework and lab 
scores to ensure consistency across sections. The experimental section had an 82% success 
rate, which was 13% higher than the 69% success rate in the comparison sections. This 
effect was marginally significant, χ2(1, N = 409) = 3.4247, p = 0.064. This improvement is 
comparable to other active learning interventions in STEM, which result in a 12% improvement 
in passage rates on average (Freeman et al., 2014). Moreover, students in the experimental 
section were more likely to persist in the course; the experimental drop rate was only 1.75%, 
while the drop rate for non-experimental sections was 5.87%. 

To account for the nesting of students within classes, I created a two-level random 
effects (HLM) model using the lme4 package in R (see Table 4). The null model included class 
section and exam number as second-level variables. In the alternative model, the use of PAR 
was added as a fixed effect. Only the final three exams were included, because, as I describe 
below, Exam 1 was used as a proxy for a pretest score. I used the anova package in R to 
compare the two models, χ2(1) = 3.9635, p = 0.0465*, which were significantly different. This 
indicates that PAR had a significant impact on student exam scores. Michelle’s comparison 
section (M = 66.84%, SD = 23.47) performed numerically similar to the rest of the 
comparison sections (M = 67.32%, SD = 19.37), while Michelle’s experimental section 
performed considerably better (M = 73.03%, SD = 18.37). Given the small sample size of 
Michelle’s comparison section, I combined all of the comparison sections for the 
remaining analyses. 
 
Table 4 
Comparison of Nested Models for Phase I Exam Scores 
Parameter Model 1 Model 2 
 Fixed Effects [Estimate (SE), t-value] 
Intercept 67.583 (3.689), 18.2 66.866 (3.60), 18.57 
PAR Intervention  6.972 (3.06), 2.282 
 Random Effects [Variance (SD)] 
Section 11.84 (3.44) 6.02 (2.45) 
Exam Number 36.19 (6.02) 35.65 (5.97) 
Residual 361.48 (19.01) 361.60 (19.02) 
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Overall Model Tests   
AIC 10061.1 10059.1 
BIC 10081.3 10084.4 
Deviance 10053.1 10049.1 
 
 Table 5 shows the results for each individual exam. To account for the nesting of 
students within classes, I used the intracluster correlation (ICC) to compute a variance 
inflation factor (Biswas, Datta, Fine, & Segal, 2007, p. 79). For each exam, the ICC within 
sections was small, near 0.01, so t values were divided by about 1.179. To test for the 
equivalence of groups, I used students’ Exam 1 scores as a proxy for a pre-test, because 
Exam 1 occurred early in the semester. Nevertheless, it is likely that instruction in the PAR 
section still had an impact on students’ Exam 1 scores, so Exam 1 should not be thought of 
as a true pre-test. Table 5 indicates that there were no significant differences in Exam 1 
scores, and that all other differences were at least marginally significant (after 
adjustments). This indicates that the student populations in parallel sections were 
comparable, and that the intervention had a significant effect. The numerical (but not 
statistically significant) difference in Exam 1 scores is consistent with the interpretation 
that PAR instruction had some impact on student scores, but less impact because it was still 
early in the semester. Overall, the effect sizes were small to medium (Cohen, 1988). To 
contextualize these results, I note that active learning interventions in STEM classrooms 
result in a 6% improvement in exam scores, on average (Freeman et al., 2014).  
 
Table 5 
Phase I Exam (Percentage) Scores (SD in Parentheses; p < 0.01**, p < 0.05*, p = 0.06†) 
 Exam 1 Exam 2 Exam 3 Final Exam 

Experimental (N = 56) 70.2 (17.4) 79.8 (14.8) 74.4 (17.6) 67.3 (21.3) 

Comparison (N = 353) 67.2 (17.8) 75.1 (15.6) 66.4 (19.2) 60.2 (22.7) 

Difference  3.0  4.8†    8.0**  7.1† 

ES (Cohen’s d)  0.27 0.38 0.27 
 

To address understanding of different problem types (research question two), I used 
the typology of problem types given in Table 2. Student performance by problem type 
(aggregated over all exams) is given in Table 6. As before, all t- and p-values are adjusted 
using the ICC correction factor.  
 
Table 6 
Phase I Mean (Percentage) Scores (SD in Parentheses) by Problem Type 

 Experimental 
(N = 56) 

Comparison 
(N = 353) Difference t p 

Problem Solving 63.94 (14.4) 59.81 (15.2) 4.13 1.50 0.14 

True/False 67.98 (16.4) 58.44 (17.2)    9.54** 3.05 0.003 
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Pure Computation 70.05 (15.7) 61.07 (19.3)   8.98** 2.86 0.005 

Miscellaneous 79.85 (12.5) 74.61 (17.0) 5.24* 2.027 0.045 
 

Student performance by problem type was calculated as a percentage of the total 
possible points for each problem type, to account for the different number of points 
assigned to different problem types. Students in the experimental section scored 
numerically higher on all aspects of the exams, but differences in problem solving were not 
significant. This contrasts with prior studies on calculus reform that showed that students 
often fell behind on traditional procedural skills (Ganter, 2001). 
 
2.3. Discussion 

Analyses of student exams addressed the first two research questions: (1) students in 
the experimental section had 13% higher success rates (marginally significant) than the 
other sections, and (2) these improvements were evident throughout the exams, not just on 
explanation-focused problems (see Tables 4, 5, 6). Although exams were analyzed by 
problem type, this analysis did not account for differences in item difficulty between items. 
Finally, using Exam 1 as a proxy for a pre-test score, I established that there were no 
significant differences between groups in baseline calculus understanding, so the effects 
found can likely be attributed to PAR. 
 
3. Phase II (Spring 2013) 
 
3.1. Materials and Methods 
 

Phase II took place in a subsequent semester of the same calculus course. The same 
coordinator ran the course, and the curriculum and lecture-based teaching styles were the 
same as Phase I. In the experimental section, students engaged in PAR, just as in Phase I. 
There were three revisions to the Phase I design: (1) minor updates to the reflection and 
feedback forms, (2) the assignment of random partners (see section 1.3.2.), and (3) weekly 
training in analyzing work (see section 1.3.3.).  
 
3.1.1. Participants  
 Phase II once again had a single experimental section with 3 observed comparison 
sections. I taught the experimental section, to ensure full implementation of the design. I 
was a graduate student with approximately three years of teaching experience. I had not 
taught introductory calculus in the last four years. Comparison instructors were chosen 
who had prior experiences with teaching and with this particular course to provide a fair 
comparison; some of the other instructors had little teaching experience or had not taught 
this course before. Sam, a post-doctoral researcher working on mathematics education 
projects, taught one of the observed comparison sections. Graduate student instructors from 
Phase I, Tom and Bashir, taught the other two observed sections. These instructors and I 
had comparable experience with this course, but their teaching experiences were more 
recent. Grading procedures were the same as in Phase I.  
 
3.1.2. Data Collection  
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 The data collected are summarized in Table 7.  
 
Table 7 
Phase II Data Collection Summary 
 Experimental Comp. 1 Comp. 2 Comp. 3 Comp. (Other) Total 
Instructor Dan Sam Tom Bashir - - 
Students 34 37 31 28 206 336 
Participants 34 34 27 24 - 119 
Video Obs. 54 6 5 5 - 75 
Interviews 22 - - - - 22 
PAR Conv. 89 - - - - 89 

 
Data collection procedures were the same, except for a few minor changes: (1) one camera 
was used rather than two to reduce logistical difficulties, (2) a research assistant conducted 
interviews and performed video observations (to maintain objectivity), and (3) students 
were offered one extra credit homework assignment as an incentive to give an interview, 
which greatly increased the number of respondents. Also, I had one of the comparison 
instructors (Tom) assign PAR problems as regular homework, which I collected. Finally, I 
collected background demographic data for students in the four observed sections. 
 
3.2. Results 
 

There were no significant differences in academic background data (ACT scores 
and high school GPA) between the four observed sections. Numerically, the lowest 
averages were in the experimental section (mean GPA: 3.43 vs. 3.56, and mean ACT 
scores: 25.45 vs. 26.3). There were no significant differences in gender or race. The 
population of students who answered the survey consisted of 19% females and 17% 
traditionally underrepresented minorities. While demographics for all students were not 
collected, this sampling seemed to be relatively representative of the typical student 
population of calculus at this institution. Although students were not surveyed specifically, 
based on an analysis of student PAR conversations, none of the students appeared to have 
limited English proficiency or were English Language Learners. Although demographics 
were not collected for Phase I, these Phase II results suggest that the natural distribution of 
students across sections was relatively balanced (i.e. various sections are indeed 
comparable). 
 As in Phase I, student course grades were used to compute student success rates. 
Course grades consisted 70% of exam scores, with the other 30% assigned to labs and 
homework. Once again, the course coordinator scaled student homework and lab scores to 
achieve consistency between sections. During Phase II, the experimental success rate was 
79%, while the comparison success rate was only 56%. This 23% difference in success 
rates was even larger than the 13% difference during Phase I. This result was a statistically 
significant, χ2(1, N = 336) = 6.3529, p = 0.0117*. To contextualize these results, I note that 
active learning interventions in STEM result in a 12% improvement in passage rates on average 
(Freeman et al., 2014). Moreover, students in the experimental section were more likely to 
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persist in this course; the experimental drop rate was 10.5%, while the drop rate for non-
experimental sections was 15.25%. These drop rates were much higher than during Phase I, 
likely due to differences in the students who enroll in the fall and spring versions of this course. 
 Differences between experimental and comparison sections were also evident in exam 
scores (see Table 8). Once again I used a variance inflation factor (mean ICC = 0.03) to adjust 
the t and p values.  
 
Table 8 
Phase II Exam (Percentage) Scores (SD in Parentheses; p < 0.05*, p < 0.01**) 
 Exam 1 Exam 2 Exam 3 Final Exam 

Experimental (N = 34) 68.4 (21.3) 81.7 (16.1) 75.7 (16.8) 75.7 (17.5) 

Comparison (N = 302) 62.2 (19.1) 66.5 (19.4) 61.5 (22.4) 65.9 (23.1) 

Difference (Phase II) 6.2   15.2**  14.2**  9.8* 

Effect Sizes (Cohen’s d)    0.62 0.55 0.37 

Difference (Phase I) 3.0 4.8*  8.1** 7.1* 
 
 As before, Exam 1 provides a baseline to further establish the equivalence of the 
experimental and comparison groups. Because there were no significant differences for Exam 1 
(a proxy for a pre-test), but the differences were significant for the other three exams, the 
differences can likely be attributed to PAR. The improvements in exam performance (row 3) 
were even larger than in Phase I (row 4). The effect sizes were medium (Cohen, 1988). To 
contextualize these results, I note that active learning interventions in STEM classrooms 
result in a 6% improvement in exam scores, on average (Freeman et al., 2014). Once again, 
the smaller, non-significant differences in Exam 1 scores are likely an indicator of early 
benefits of PAR instruction. 

As in Phase I, I created nested two-level random effects models to account for the 
nesting of students within classes (see Table 9). Using anova to compare the two models, I 
found that the PAR intervention had a significant effect, χ2(1) = 8.6565, p = 0.00325**. The 
average exam scores in the experimental section (M = 75.2%, SD = 18.6) were much higher 
than in the comparison sections (M = 64.1%, SD = 21.1) 
 Research question two was addressed by analyzing exams by problem type. Phase I 
results were generally replicated; students in the experimental section did better on all 
problem types, even purely computational (see Table 10). Differences for problem solving 
and miscellaneous problems were statistically significant, pure computation was marginally 
significant, and true/false was not significant. I report adjusted t and p values, accounting for 
intracluster correlation.  
 It is likely that the differences between the experimental and comparison sections are 
overstated for miscellaneous problems. There were a total of 450 points possible across all 
exams, with only 35 associated with miscellaneous problems. Because these problems made up 
such a small percentage of the exams, they are likely to be less reliable than categories such as 
problem solving, which made up approximately 50% of the exams. 
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Table 9 
Comparison of Nested Models for Phase II Exam Scores 
Parameter Model 1 Model 2 
 Fixed Effects [Estimate (SE), t-value] 
Intercept 66.98 (2.09), 31.99 65.48 (1.66), 39.55 
PAR Intervention  12.28 (3.27), 3.75 
 Random Effects [Variance (SD)] 
Section 19.09 (4.37) 5.11 (2.26) 
Exam Number 5.10 (2.26) 4.49 (2.12) 
Residual 429.67 (20.97) 439.21 (20.96) 
Overall Model Tests   
AIC 8254.0 8247.3 
BIC 8273.3 8271.5 
Deviance 8246.0 8237.3 
 
Table 10 
Phase II Mean (Percentage) Scores (SD in Parentheses) by Problem Type  

 Experimental 
(N = 34) 

Comparison 
(N = 302) Difference t p 

Problem Solving 64.51 (12.0) 52.62 (15.6)     11.89** 3.00 0.0042 

True/False 59.15 (16.8) 52.25 (18.1)   6.90 1.28 0.21 

Pure Computation 71.72 (12.9) 64.02 (17.6)     7.70† 1.81 0.076 

Miscellaneous 73.29 (14.3) 60.85 (20.7)   12.44* 2.61 0.012 
 
3.3. Discussion 
 
 Phase II provided a replication of Phase I’s results; (1) students in the experimental 
section had 23% higher success rates than other sections, and (2) they performed 
numerically better on all aspects of the common exams (gains for problem solving and 
miscellaneous were significant). Once again, item difficulty was not taken into 
consideration. During Phase I the impact of PAR was measured while controlling for 
teacher effects. Thus, it is unlikely that improvements during Phase II can be attributed 
entirely to teacher effects. Moreover, Phase II featured an improved version of the Phase I 
design, which likely accounts for at least some of the additional improvement. Phase II 
demonstrates that multiple teachers could use PAR successfully.  
 
3.3.1 Comparison of Phases I and II 
 Students in the experimental sections numerically outperformed the students in the 
comparison sections for all problem types. Nevertheless, there were notable differences 
between phases. During Phase I, the differences for true/false and pure computation 
problems were significant, while they were not during Phase II. Also, during Phase II the 
differences for problem solving problems were significant, while they were not significant 
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during Phase I. These differences may be attributable to differences in teaching style across 
phases; Michelle was much more likely to use IRE-style questioning in her classroom, 
emphasizing procedural computations, while Dan was more likely to require open-ended 
explanations from the students. Nevertheless, analyses did not account for the difficulty of 
items on exams, which may also account for some of these differences.  
 The average success rate for comparison sections during Phase I was considerably 
higher than during Phase II (69% vs. 56%). This difference is reflected in average exam 
scores, which were 5-10% higher on exams 1-3 comparing Phase I to Phase II students; 
notably, Phase II students scored higher on the final exam compared to the Phase I 
students, by 5.7%. In the design of the Phase II final exam, the course coordinator noted 
that the previous semesters’ exam was too difficult, and made efforts to decrease the length 
and difficulty level of the Phase II exam. The course coordinator also noted that students 
during spring semesters historically tend to have lower success rates than those in the fall, 
because they are generally students who were not on the “standard” track, meaning that 
they may have had to take additional remedial mathematics courses before they could take 
calculus. 
 Because Tom and Bashir both taught during Phase I and Phase II, the average 
scores from their sections also provide a point of comparison. Bashir’s scores increased 
between phases (63.7% to 69.4%), while Tom’s remained mostly the same (65.5% to 
65.8%). Given the differences student populations, this seems to indicate that both 
instructors improved in their teaching across semesters, but without knowing more about 
their specific classes no more definitive conclusions can be drawn. The next major section 
describes student revisions, and the section following that describes the PAR mechanisms 
that supported learning. 
 
3.3.2 Improvement in Student Explanations 
 PAR was designed to improve student understanding generally, and student 
explanations specifically. While in-depth analyses of student explanations are beyond the 
scope of this paper, they are discussed in a forthcoming paper (Reinholz, forthcoming a). 
To contextualize student improvements on exams, I provide a brief summary of those 
results. 
 Student explanations were analyzed on three of the PAR problems (PAR 5, 10, and 
14) to see the progression of student explanations over the course of the semester. Student 
work was analyzed from the Phase I experimental section, the Phase II experimental 
section, and a comparison section from Phase II. Student explanations were scored using a 
rubric consisting of four categories: accuracy, mathematical language, clarity, and use of 
diagrams. Solutions were double coded, with 94.1% agreement.  
 Aggregating explanation scores across the semester, the Phase II section scored 
more than 4.5 times higher than the comparison section, and more than 1.5 times higher 
than the Phase I section. The results held across individual dimensions as well, with Phase 
I scoring higher than the comparison section on all aspects of their explanations and Phase 
II scoring higher than Phase I on all aspects of their explanations. As this brief summary of 
some of the results highlights, students improved their explanations considerably as a result 
of PAR. 
 
4. Students Revisions in PAR 
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The quantitative results from Phases I and II provided evidence of the positive 

impact of PAR on student performance in calculus. To better understand how students 
learned from PAR, I analyzed PAR assignments in the Phase II experimental section to 
look for changes in PAR scores as a result of revision.  

 
4.1. Materials and Methods 

 
To understand the impact of PAR for different students in the course, I broke the class 

into thirds (High, Middle, and Low), according to students’ final scores on the PAR 
assignments. I used a random number generator to select three students from each of these 
groups. Of these nine students who were randomly sampled, there were four cases in which I 
had recorded a score for their final solution, but did not have a scan of the student’s PAR 
packet. These were students who turned in their assignment separately from the rest of the 
class, and as a result some assignments did not get scanned. I dropped these four solutions from 
the analysis. I had a total of 122 PAR packets to analyze, each with an initial and final solution. 

To measure the impact of PAR on student solutions, I blindly re-scored each student’s 
initial and final solutions. Although I did not conduct double scoring to establish inter-rater 
reliability, the purpose of this analysis was to investigate changes in scores, so any systematic 
biases in scoring should be present in both the scoring of initial and final solutions. 

 
4.2. Results 

 
 The sampled students turned in all of their PAR homework assignments, except for two 
students in the Low group didn’t turn in PAR14 (the final problem). This was a 98% completion 
rate for PAR homework assignments. In contrast, the comparison section had only a 70.2% 
completion rate for the same problems.  
 
Figure 10 
Distribution of Initial PAR Scores 
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 The distribution of initial scores is given in Figure 10.  Students in the Low and Middle 
groups had relatively similar distributions of scores; neither group achieved any scores of 9-10, 
and most of the scores were distributed from 0-5 points. In contrast, students in the High group 
had a very different distribution of scores: some students achieved scores of 9-10, and the 
majority of initial scores were distributed between 4-8.  
 Figure 11 provides the distribution of final scores on the PAR problems. Of the three 
groups, only the High group achieved a considerable amount of 10 scores; there were no scores 
of 10 in the low group. In the Middle group there were a number of 8 and 9 scores, with some 8-
9 scores in the Low group as well. A comparison of Figures 10 and 11 shows a considerable shift 
in the distribution of PAR scores after revision. 
 
Figure 11 
Distribution of Final PAR Scores  

 
 
 Of the solutions in the experimental section that were turned in, there were only three 
instances in which the students did not revise their work from initial to final solution. It was a 
single student in the Middle group who did not revise twice, and a student in the Low group who 
did not revise once.  Students in all groups significantly improved their solutions after revision, 
as evidenced by Table 11.  

 
Table 11 
Average PAR Scores, By Group 

 Initial Score Final Score Change t p 

High 5.09 7.98 2.89** 8.95 3.4 · 10-11 

Middle 2.82 6.55 3.73** 7.73 1.8 · 10-9 
Low 2.78 5.60 2.82** 6.31 2.6 · 10-7 
 
 The data in Table 11 suggest that students in the Middle group benefitted most from 
PAR. To better understand these results, I looked at the distribution of revision scores. I 
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grouped the amount of change for each group into four categories: no change, 1-3 points 
change, 4-7 points change, and 8-10 points change (see Figure 12).  
 
Figure 12 
Distribution of Revisions 

 
 
 Figure 12 shows that students in the High group were most likely to make small or 
medium improvements to their solutions. Students in the Middle group were the only group of 
students that consistently made large improvements to their solutions. Students in the Low group 
were least likely to benefit, making small gains more often than the other students. To better 
understand the 12 students who improved their scores by 8-10 points, I analyzed their PAR 
conversations and consulted my daily field notes. I identified two potential explanations for such 
drastic improvements: PAR conversations and office hours. The results are summarized in Table 
12. The PAR conversation was considered as a potential source of improvement: (1) if a 
student’s partner correctly solved the aspect(s) of the problem that the student was struggling 
with, or (2) the major errors were discussed in the conversation or written feedback. I considered 
office hours as the source if I had documented working with the particular student on that 
problem during office hours. Without observations of students’ revision processes I do not have 
sufficient data to claim that these processes caused improvement, but the results suggest that 
PAR may support meaningful revisions in these ways.  
 
Table 12 
Potential Sources of Considerable Improvement on PAR Problems 
Source Office Hours PAR Conversations Undetermined 
Number of Students 5 5 2 
 
4.3. Discussion 
 
 All students made significant improvements to their homework solutions as they 
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revised from initial to final solutions. Students in the Low and Middle groups had similar 
distributions of initial PAR scores. However, students in the Middle group were much 
more likely to considerably improve their solutions after revision. These data suggest that 
one of the key differences between students who scored in the Low and Middle groups 
may be how they benefited from PAR and their revisions. Table 12 indicates that when 
students made considerable improvements in their revisions it was mostly due to their PAR 
conversations and additional time spent working on the problem after their conferences.  
 The help-seeking literature suggests that students with moderate need are the most 
likely to seek help (Karabenick & Knapp, 1988). This is consistent with the finding that 
students in the middle group were the most likely to improve as a result of seeking external 
help. However, the students in the low and middle groups had relatively similar initial 
scores, so it is unclear what factors may have caused some of them to seek help while 
others did not. In general, low-performing students may be less likely to seek help due to 
low self-efficacy or negative emotions related to failure (Karabenick & Knapp, 1988), 
which may have been factors at work here. This is an area for future research. 
 
5. PAR Mechanisms 

 
5.1. Materials and Methods 

To understand student experiences with PAR, I analyzed interviews from Phase II. I 
focused on Phase II data because there was a much higher response rate than Phase I, 
which meant the interviews were more likely to represent a range of opinions. The 
following analyses focus on the first interview question that was asked: “Let’s discuss the 
PAR; what’s working well and not so well for you?” I focus on this question, because it 
was likely to elicit a balance of positive and negative aspects of PAR. 

After transcribing student responses, I read through all of the transcripts multiple 
times to identify themes. After a set of themes was identified, I developed codes, both for 
positive and negative reactions. Using this set of codes I re-analyzed each student response 
and marked whether or not each code was present.  

 
5.2. Results 

Of the codes that were developed, six appeared most frequently in the data. Codes 
were only included if they described responses from at least two students. These codes and 
their frequency in the data are summarized in Table 13. Given the frequency of positive 
and negative reactions, students were generally quite positive towards PAR. 

 
Table 13.  
Frequency of Student Reactions to PAR (N = 22 interviews) 

Positive Reactions Negative Reactions 
Iteration Discussion Explanation Alternatives Workload Both Confused 

6 13 9 11 2 8 
 

The positive student reactions described four mechanisms of PAR that appeared to 
support learning. PAR required students to work in iterative cycles: students made a 
preliminary attempt at a problem, received feedback and thought about the problem more 
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deeply, revised, and turned in their final solution. Within these iterative cycles, students 
encountered new ideas to support their learning: by discussing with peers, by explaining 
and hearing explanations, and by seeing the work of others. These four sources can be 
consolidated into the acronym IDEA, meaning Iteration, Discussion, Explanation, 
exposure to Alternatives. I now discuss these mechanisms. The student quotes given 
below are intended to exemplify each category of student responses. 
 
5.2.1. Iteration 
 

Rather than viewing homework as something that is attempted once, turned in, and 
forgotten about, PAR forced students to revisit their work. As a result, students seemed to 
view their first draft of the problem as a work in progress, and didn't expect it to be correct. 
Six students noted this in their interviews. As Barry said, 
 

I like the PAR. It's like we get to come to class and be wrong, and that's okay. Then 
later we get to revise our work and be right.  

 
Mike made a similar remark, 
 

PAR is good. I like how we can put our initial solution down, and even if it's wrong 
it doesn't really matter, because we can just talk about it with a group member the 
next day, and figure it out together. And generally you don't get stuck on a wrong 
solution, you figure it out.  

 
This activity structure seemed to increase students' perseverance. Rather than giving up 
when they could not solve a problem on their own, students seemed to realize that getting 
input from peers, the instructor, or other resources was often sufficient to help them solve 
challenging problems. This perseverance was evident in students’ homework assignments; 
the number of students who fully completed the challenging PAR problems in the 
experimental section was much higher than in the comparison section (98% vs. 70.2%).  
 
5.2.2. Discussing the Problem Together 
 

Most students appreciated the opportunity to collaborate with their peers. More than 
half of the students (13 of 22) noted this. As Tom said, 

 
I like the PAR because it got you to interact and communicate with the other 
students…no one likes to just watch someone talk at a board all day. The self 
teaching and student interaction helped…PAR helps us be more social, so you can 
talk to other students, set up study groups, and get to know your classmates. 

 
The value of student discussions was exemplified by the first example provided in this 
paper, in which Peter and Lance revised their methods for approximating error. 
 
5.2.3. Explanation 
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Many students came to appreciate the importance of explaining their ideas. Nine 
students made mention of this. As Barry noted in his interview, 

 
I like the PAR. I’d take it over the other homework. You do about the same amount 
of work, and I think you learn more from it. You have do explain what you did, 
rather than just say here, I got this magical number. You actually understand the 
process and I think that helps more in learning than just getting the magical number.  
 

As Maria said, PAR helped her learn: 
 

how to make it easier to read from another person's perspective. It's one thing if I 
think it looks good, but other people look at it and say it doesn't make sense to me. 
So it helps me figure out how to communicate better. It helps me to explain things 
in a way that is readable to others and not just myself. 

 
5.2.4. Exposure to Alternatives 
 
Students sometimes recognized errors in their own solutions simply by looking at one 
another's work. Half of the students (11 of 22) noted this. As Harry said,  
 

I really like looking at other people's initial models. I can see what they are 
thinking, it puts me in their head, and I can see that. A lot of times I'm really wrong 
and I can see different ways to do the same thing. 
 
This was also evident in students’ conversations. Consider the following excerpt 

from PAR7. As soon as the students finished silently reading one another's work, Revati 
exclaimed that she saw her errors, 

 
[1] Revati: I know I did it all wrong. I was reading yours and was like, “oh my 

goodness. How did I miss this?” Okay, so. You did a really good job 
explaining, so you have all that right. And your math is all correct so... good 
job! You could have turned this in as your final and gotten 100% 

[2] Federico: Okay, thank you. Em, well I think now you know the errors? 
 
PAR provided students with opportunities to analyze, explain, and discuss the work of their 
classmates. These opportunities seemed to help students make mathematical connections 
and develop deeper understandings of the problems. Students in comparison sections rarely 
had opportunities during class sessions to explore their peers’ reasoning in depth.  
 
5.2.5. Negative Reactions to PAR 
 
 Although students were generally positive towards PAR, there were areas that 
students felt could be improved. The most common criticism of PAR was that sometimes 
both partners would get stuck and that made it hard to make progress on the problem (8 of 
22 students noted this). As Michelle said, 
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If it’s a confusing problem we just get together and talk about how neither of us 
know what is going on or we have no idea how to do it.  

 
The other main issue that students had (only two students noted) was the amount of work 
required by the course. Given the large number of assignments they had, PAR felt like it was 
too much on top of an already overloaded course. This criticism was not of PAR 
specifically, but of the organization of the course.  
 
6. Discussion 
 

This paper focused on how reflection tools could promote improved understanding 
of calculus. Through cycles of problem solving, reflection, feedback and analysis, and 
revision, students had opportunities to exercise disciplinary authority and were held 
accountable to their peers (Engle & Conant, 2002). PAR was supported by training 
exercises that helped students learn to analyze work and provide feedback. The PAR 
activities were conducted using a rich problem set, which provided opportunities for 
students to explain their ideas and compare multiple solutions with one another. Although 
these problems seemed to be an important part of the intervention, by themselves they were 
insufficient; these problems were also assigned in Tom’s experimental section during 
Phase II with little impact.  

Students in the PAR sections were given some opportunities to explain their ideas 
during class and engage in group work to support PAR. Although in-depth analyses of 
classroom activities are beyond the scope of this paper, similar activities were observed in 
some of the comparison classrooms as well (e.g., Heather’s and Sam’s sections). 
Accordingly, it seems reasonable to assert that the standard classroom activities in the PAR 
sections were not considerably different from the comparison sections; PAR was 
implemented in a primarily lecture-based environment, which was typical of calculus 
instruction at this institution. 

Success rates in the experimental sections were higher than the comparison sections, 
13% in Phase I (marginally significant), and 23% in Phase II (statistically significant). This 
demonstrated the impact of PAR on student success (research question one). These are 
impressive gains, showing that the impact of PAR compares favorably with other active 
learning interventions in STEM (Freeman et al., 2014). Moreover, these gains were 
replicated over two semesters. These gains are important, because student success in 
calculus remains an area of concern. The persistence rates were also higher in the 
experimental sections during both phases of study; it is possible that the community-
building aspects of PAR may have made students less likely to drop the course. 

Improvements were also apparent on exam scores during Phase I (experimental vs. 
comparison, same instructor: 6.19%; and experimental vs. comparison, other instructors: 
5.71%) and Phase II (experimental vs. comparison: 11%). Students improved numerically 
on all aspects of their exams, both explanations and procedures (research question two). 
These are considerable differences, especially given that the experimental sections included 
more students who would traditionally drop out of the course. No significant differences 
were apparent on Exam 1, which provides a proxy for a baseline pre-test score to establish 
the comparability of students in different sections. A companion paper (Reinholz, 
forthcoming a) focuses more directly on student explanations, and provides results 
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consistent with the present findings.  
During Phase I, Michelle taught two sections to control for teacher effects. 

Michelle’s comparison section performed similarly to the other comparison sections, which 
suggests that improvements can be attributed to PAR, not the teacher. During Phase II, 
teacher effects were not controlled for specifically. As a result, it is possible than some 
improvements may be attributed to the particular instructor, but given the impact of PAR 
during Phase I, and the improvements to the design for Phase II, it is unlikely that 
improvements can be attributed entirely to teacher effects. A goal of future studies would 
be to further replicate these results through a randomized experimental design.  

The present study also makes an important contribution to literature on assessment 
for learning. Despite a large body of work on peer assessment, most of it has focused on 
calibration between instructor and peer grades, not how assessment can be used to promote 
learning. PAR demonstrates the effectiveness of such techniques, particularly in a content 
area where such practices are uncommon. Moreover, the iterative nature of PAR seemed to 
help students develop the perseverance required to solve challenging problems. The impact 
of PAR on student dispositions is an area for further study. 

Design-based revisions provided greater affordances to support student learning 
(research question three). In particular, students worked with random partners, had regular 
training opportunities, and used streamlined self-reflection and peer-feedback forms. The 
underlying principles of having students analyze each other’s work and provide feedback 
to each other appear to be productive activities that may work in a variety of contexts. 

PAR was developed with two very different student populations in different 
contexts: primarily traditionally underrepresented minorities in a remedial algebra class 
and mostly White students in introductory college calculus. Since this initial study, PAR 
has been used in differential equations, introductory mechanics (physics), engineering 
statics, and thermodynamics. Given that PAR has been implemented in a variety of 
contexts, it appears to be a general method that could be effective across a broad variety of 
STEM learning contexts. To implement PAR and the corresponding training activities 
requires no more than 20 minutes of in-class time each week, which means that it is 
possible to include PAR as a part of a variety of different classrooms. As the impact of 
PAR is studied in new contexts, it will provide further insight into the activity structure and 
how students learn through peer analysis.    
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Appendix A: Self-Reflection Form (Phase II of Study) 
 
On a scale from 0% to 100%, how confident do you feel in your solution? _______ 
 
Completeness, Organization, and Labeling 
Did you answer all questions asked, showing all steps, in the proper order?   Yes____ No____ 
 
(If applicable) Did you label and explain all graphs, include units, etc.?   Yes____ No____ 
 
Explanations 
Did you explain why (not just what)?   Yes____ No____ 
 
Use of Language 
Did you avoid the use of pronouns (and other ambiguous language)?   Yes____ No____ 
 
(If applicable) Did you consult definitions of mathematical terms you used?   Yes____ No____ 
 
Justification 
Did you justify your solution (in at least 1 of the following ways):    Yes____ No____ 

• By checking if answers to different parts of the question are consistent? 
• By explaining (in writing) how you know your solution is correct? 
• In some other way? If so, how? __________ 

Note: Show explicitly on your solution how you justified your solution. 
 
(Optional:) Is there anything in particular you’d like to discuss with your partner? 
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Appendix B: Peer-Feedback Form (Phase II of Study) 
 

Communication: Give at least one suggestion to improve the communication of the solution. 
(Focus on explanations, imprecise use of language, organization, labeling, etc. Be specific: 
don’t say “it was hard to follow” or “part 2 was unclear;” say why it was hard to follow, what 
was unclear, and how to improve it.) 
 
 
 
 
 
 
 
Correctness: Note any errors you found. (Focus on misunderstanding of concepts, misuse of 
mathematical language, calculational errors, incomplete answers, etc. Be specific: don’t just say 
“part 2 was wrong;” say exactly what is wrong, why it is wrong, and how to improve it.) 
 
 
 
 
 
 
  
 
(Optional:) What other feedback to you have? How else could the solution be improved? 
 
 
 
 
 
 
 
 
 


