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This paper focuses on the development of three skills underlying mathematical authority: (1) explanation, 
(2) justification, and (3) assessment. An intervention was designed to help students develop these skills 
through explicit engagement with assessment in the classroom. Preliminary results from this ongoing study 
indicate that students had improved meta-level understandings of solutions, which supported greater levels 
of explanation in their solutions of problems.  
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Introduction 

When a mathematician solves a problem or submits a proof to a journal, he or she doesn’t wonder 
whether or not the work is correct; he or she knows it is. Most mathematicians self-assess using highly-
internalized mathematical standards. In contrast, mathematics students routinely submit assignments with 
little sense of how well they did, relying on their instructor to be the arbiter of mathematical truth. For 
these students, mathematical authority is something that exists externally to them. This paper is focused on 
how students internalize mathematical standards. 

Mathematical authority relates to positioning and identity (cf. Boaler & Greeno, 2000; Engle & 
Conant, 2002), as well as specific skills and domain knowledge. This paper focuses on three mutually 
supportive skills, hypothesized to be crucial to mathematical authority (as conceptualized in Figure 1): 
(1) explanation, (2) justification, and (3) assessment. Mathematicians use these skills to derive authority 
from the logic and structure of mathematics (internalized authority), rather than relying on some other 
authoritative source like a teacher or textbook (external authority). These skills are widely recognized as 
part of the multi-faceted nature of mathematical proficiency (e.g., NCTM, 2000) with explanation and 
argumentation specifically emphasized by the Common Core State Standards (Common Core State 
Standards Initiative [CCSSI], 2010). 

 

 
Figure 1: Three skills hypothesized to underlie mathematical authority 

 
The design of this study’s intervention draws on research showing that when students self-assess, they 

are unlikely to spontaneously generate information to test their understanding, which impedes accurate 
self-assessment (Dunlosky & Lipko, 2007). Just as perceiving constructive and deductive geometry as 
unrelated hinders mathematical performance (Schoenfeld, 1988), I hypothesized that perceiving 
explanation and justification as extraneous parts of a solution inhibits accurate self-assessment. When 



  

students are unable to use their own reasoning to justify their work, they are forced to rely on an external 
mathematical authority. Sadler (1989) suggests that standards of a high-quality solution should be 
communicated through a combination of descriptive statements, exposure to exemplars, and direct 
evaluative experience. Crucially, as students analyze others’ work, they develop the required objectivity 
and skills to assess their own work (Black, Harrison, & Lee, 2003). Thus, this study used peer-assessment 
to promote the development meta-level understandings of solutions that are crucial to self-assessment.  

Methods 

This paper draws on preliminary data collected during from an ongoing design research study with 
elementary algebra students (N = 20) at a community college in the San Francisco Bay Area. Data were 
collected from classroom videos, student written work, and the instructors’ daily reflections. As a pre-test, 
students assessed sample written work of two hypothetical students solving the problem: “If a tortoise is 
traveling at an average of 1 2/3 miles per hour, how long would it take the tortoise to travel 6 miles?” (see 
Figure 2). Students were presented with two solutions sequentially, and after seeing each solution were 
asked to explain the hypothetical student’s reasoning, and why it was correct or incorrect. Finally, students 
were asked to reconcile the two conflicting solutions, and explain how they could determine which 
solution was correct.  

 

 
a. 

 
b. 

Figure 2: (a) Initial sample solution; (b) Sample solution presented after initial assessment  

 
As an intervention, students were introduced to a framework for assessing mathematical solutions. The 

framework emphasized that a solution should answer three questions for the reader: (1) What did you do?; 
(2) Why did you do it?; and (3) Did you do it correctly? These relate to three parts of a solution: (1) the 
execution, (2) the explanation, and (3) the justification. Guided by the instructor, students discussed 
features of high-quality solutions to generate a rubric based on the above framework. Students also 
engaged in various peer- and self-assessment tasks using the student-generated rubrics.  

The results presented here document students’ changes in their perceptions of solutions.  Because the 
data are preliminary, and peer-assessment can be seen as a precursor to self-assessment (Black et al., 
2003), this paper focuses on the development of understandings that would support self-assessment, but 
not their actual application to self-assessment. This brief report considers the development of a few focal 
students, to highlight trends within the larger data corpus. 

Results and Analysis 

In the pre-test, students articulated what steps the hypothetical students took to solve the problem, but 
could not explain why they took them, even when pressed by the instructor (e.g., “why did the student 
multiply rather than divide?”). When asked to determine which solution was correct, only one student 
generated an answer. This student recognized that if the tortoise was traveling faster than 1 mph, then 10 
hours for a travel time was much too long, so therefore the first solution must be incorrect. Other students 
either responded that it was impossible for them to determine which solution was correct, or that they 
didn’t know how to figure it out. Students asked the instructor to resolve the mathematics for them.  

The pre-test provided the basis for classroom discussions about important qualities of a complete 
mathematics solution. In these discussions, students articulated that the sample solutions lacked detail, thus 
providing limited access to the hypothetical students’ reasoning. Students were presented with a 
framework for high-quality solutions, and were guided to generate a rubric using this framework. Students 



  

suggested 8 important features of a solution, such as: a written statement explaining why the solution path 
was chosen, checking units, and estimating what a reasonable answer would be. Students then discussed 
how the sample solutions would have been easier to assess if they had these features. The instructor 
introduced 5 additional features of high-quality solutions to the class to complete the rubric. 

Two weeks later, students were once again presented with one of the sample solutions from the pre-
test (see Figure 1, sample a). After analyzing the solution using the rubric they had developed, students 
explained how generating a more complete solution would have helped their classmate. Some students, 
like Tanya, focused on specific solution features:  

Tanya: It would have helped him if he put the units down on his paper to check what to cancel out, 
since the problem gives you miles and miles per hour.  

Tanya seems to understand that units are not just part of a complete solution, but actually a tool for 
problem solving, because they help determine which arithmetic operations are meaningful to perform. 
Other students, like Enrique and Jason, focused on solutions holistically: 

Enrique: A more complete solution would have made him catch his mistakes. 
Jason: The execution is well done, but there’s no explanation of any sort. The only thing that seems 

good is the answer.  

Enrique’s response emphasizes that careful solutions are important because they make our thinking 
(and thus mistakes) more evident. Jason alludes to the fact that the lack of explanation makes it difficult to 
say much about the student reasoning (e.g. “the only thing that seems good”). In sum, students transcended 
the specifics of the solution given, and exhibited meta-level understandings of solutions in general. These 
are the types of understandings that would allow students to begin to act as authorities themselves, rather 
than referring to an external authority. 

As students develop a sense of high-quality mathematics solutions, it should also become evident in 
their written work. A comparison of students’ solutions to the first two homework assignments (one week 
apart) provided evidence of such growth. (Note: the first homework assignment had 10 problems, and the 
second assignment had 11 problems but was of comparable length.) In general, solutions for the second 
homework assignment were more verbose and began to include explanations of reasoning (the first 
assignments contained little to no explanations). These changes were particularly striking for two of the 
students highlighted above, Jason and Tanya, whose solutions doubled in length (from 2 to 4 pages) 
between these two assignments. The increase in length was due to an inclusion of much more significant 
explanations and justifications in the second assignment.  

Evidence of a more sophisticated understanding a solution was also evident in students’ daily 
reflections. At the end of each class session, students were asked to answer a number of reflection 
questions, both in general and specifically related to the given lesson. When asked, “What does a good 
explanation in a math solution look like and why is it important?” Jason cogently responded: 

Jason: A good explanation can help someone understand the problem just by redoing the steps you 
took. After reading the steps they know why you took those steps and what you were doing. 

This response seems to indicate a transition to seeing the solution to a math problem as an explanation of 
one’s reasoning, not just “finding an answer.” Jason’s initial homework assignment included little to no 
justification or explanation, whereas his second homework assignment and responses to in-class questions 
were much more complete. Although we can only infer how Jason sees mathematics, there is evidence of 
changes in how he does mathematics. By explicitly turning students’ focus to important features of 
solutions, it is possible to improve the quality of solutions that they submit. 

Conclusion 

By making the analysis of solutions an explicit focus of classroom activity, students were supported to 
develop meta-level understandings of solutions to mathematics problems. Students were able to articulate 
why including certain aspects of a solution can be essential, rather than an extraneous requirement imposed 



  

by the teacher. Evidence of growth was also apparent in students’ homework solutions, which included 
greater explanations and justifications. Thus, preliminary results from this ongoing study show evidence of 
students’ nascent development of internalized mathematical authority. These results provide the basis for 
the further refinement of classroom activities for promoting and studying students’ development of skills 
of explanation, justification, and assessment. Moreover, the continuation of this work will allow for the 
study of students’ application of these skills to self-assessment.  
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